检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tashpolat Nizamidin Zhao Li Zhang Mingyang Xu Xinzhou Askar Hamdulla 塔什甫拉提.尼扎木丁;赵力;张明阳;徐新洲;艾斯卡尔.艾木都拉(东南大学水声信号处理教育部重点实验室,南京210096;新疆大学信息科学与工程学院,乌鲁木齐830046)
机构地区:[1]Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 21009,China [2]School of Information Science and Engineering’ Xinjiang University,Urnmqi 830046, China
出 处:《Journal of Southeast University(English Edition)》2017年第4期437-443,共7页东南大学学报(英文版)
基 金:The National Natural Science Foundation of China(No.61673108,61231002)
摘 要:To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conventional linear discriminant analysis(LDA),uncertainties of the noisy or distorted input data ae employed in order to estimate maximaiy discriminant directions.The effectiveness of the proposed uncertain LDA(ULDA)is demonstrated in the Uyghur speech emotion recognition task.The emotional features of Uyghur speech,especially,the fundamental fequency and formant,a e analyzed in the collected emotional data.Then,ULDA is employed in dimensionality reduction of emotional features and better performance is achieved compared with other dimensionality reduction techniques.The speech emotion recognition of Uyghur is implemented by feeding the low-dimensional data to support vector machine(SVM)based on the proposed ULDA.The experimental results show that when employing a appropriate uncertainty estimation algorithm,uncertain LDA outperforms the conveetional LDA counterpart on Uyghur speech emotion recognition.为了在语音情感识别中获得高效、紧凑的低维特征,提出了一种新的基于不确定线性判别分析的特征约简方法.用与传统LDA相同的原则,在最大判别方向的估计中引入带噪声或失真输入数据的不确定性.在维吾尔语语音情感识别任务上验证了不确定性判别分析的有效性.在该情感数据上,分析了维吾尔语的语音情感特征,着重对维吾尔语语音的基音频率和共振峰频率进行了详细分析.利用不确定性线性判别分析对特征维数进行了降维研究,获得了比其他的常用降维技术更好的结果.通过不确定性线性判别分析获得的低维数据供给支持向量机,实现了维吾尔语的语音情感识别.实验结果表明,采用适当的不确定性估计算法时,在维吾尔语音情感识别任务上,不确定性线性判别分析(ULDA)算法优于传统LDA降维算法.
关 键 词:Uyghur language speech emotion corpus PITCH FORMANT uncertain linear discriminant analysis (ULDA)
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.252.155