机构地区:[1]Triticeae Research Institute, Chengdu Campus of Sichuan Agricultural University
出 处:《The Crop Journal》2018年第1期82-90,共9页作物学报(英文版)
基 金:supported by the National Key Research and Development Program (2016YFD0102000);the National Natural Science Foundation of China (31671689, 31601300, 31671682);the Sichuan Provincial Agricultural Department Innovative Research Team (wheat-10);the Sichuan Province Science&Technology Department Crops Breeding Project (2016NYZ0030)
摘 要:The common wheat landrace Chinese Spring(CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosomes. Based on this, a standard karyotype and nomenclature system was developed for wheat chromosomes that allowed wheat researchers to analyze and manipulate the wheat genome with unprecedented precision and efficiency. Nevertheless, not much is known about the utilization of CS at its hometown, Chengdu in Sichuan province, during early wheat breeding activity. In this review, we follow the speculation that CS is a selection from the Cheng-du-guang-tou(CDGT) landrace. We provide a description of how CDGT became a founder landrace for wheat breeding activities in early times. We show that CDGT-derived varieties were reinforced genetically by crosses to six more exotic parents. These varieties remained the major elite cultivar for several decades. Later, synthetic hexaploid wheats were introduced into the breeding program, firstly using those from CIMMYT and later using materials produced with local tetraploid wheat and goat grass. Finally, we discuss the strategies and future directions to improve wheat yield and resistance through an expanded genetic basis,especially by recapturing lost genetic variations from landraces and related wild species, a process that may set an example for wheat breeders in China and elsewhere.The common wheat landrace Chinese Spring(CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosomes. Based on this, a standard karyotype and nomenclature system was developed for wheat chromosomes that allowed wheat researchers to analyze and manipulate the wheat genome with unprecedented precision and efficiency. Nevertheless, not much is known about the utilization of CS at its hometown, Chengdu in Sichuan province, during early wheat breeding activity. In this review, we follow the speculation that CS is a selection from the Cheng-du-guang-tou(CDGT) landrace. We provide a description of how CDGT became a founder landrace for wheat breeding activities in early times. We show that CDGT-derived varieties were reinforced genetically by crosses to six more exotic parents. These varieties remained the major elite cultivar for several decades. Later, synthetic hexaploid wheats were introduced into the breeding program, firstly using those from CIMMYT and later using materials produced with local tetraploid wheat and goat grass. Finally, we discuss the strategies and future directions to improve wheat yield and resistance through an expanded genetic basis,especially by recapturing lost genetic variations from landraces and related wild species, a process that may set an example for wheat breeders in China and elsewhere.
关 键 词:INTROGRESSION Multiparent advanced generation inter-cross SYNTHETIC HEXAPLOID WHEAT Unreduced GAMETES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...