检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭桂容[1] 尹丝雨 王永光[2] TAN Guirong;YIN Siyu;WANG Yongguang(Key Laboratory of Meteorological Disaster,Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster(CIC FEMD),Nanjing University of Information Science & Techno;National Climate Center,China Meteorological Administration,Beijing 100081,China)
机构地区:[1]南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,江苏南京210044 [2]中国气象局国家气候中心,北京100081
出 处:《大气科学学报》2017年第6期749-758,共10页Transactions of Atmospheric Sciences
基 金:公益性行业(气象)科研专项(GYHY201206016;GYHY201306028);国家自然科学基金资助项目(41475088)
摘 要:利用1979—2015年中国国家气候中心整编的160站月平均气温和NCEP/NCAR全球大气再分析资料,从1979/1980—2008/2009年冬季前期500 h Pa高度场、200 h Pa势函数和850 h Pa势函数场选择预测因子,考虑不同时效因子的组合及其独立性,综合应用多因子回归集合、交叉检验集合、逐月滚动集合,建立了针对中国冬季气温的逐月滚动预测模型,并利用该模型对2010/2011—2014/2015年冬季气温进行了独立预测试验和检验。结果表明,综合运用多种集合可提高短期气候客观定量预测的可行性和稳定性。多因子回归集合能增加可预测站点数,交叉检验集合可减少因统计关系不稳定而产生的对预报效果的影响,逐月滚动集合的应用不仅增加了可预测站点数,而且使预测效果更加稳定。本文建立的预测模型可对中国冬季气温进行长时效的预测,且有一定的预报技巧,对实际的季节预测业务有重要应用价值。With the development of social economy and the improvement of peoples living standard,the demand of country and society for the short term climate prediction is increasing.Though current methods including statistic,dynamical statistic and numerical methods for the prediction of surface air temperature in wintertime are more,the prediction lead time is usually short and the forecast skill is not stable.For example,the seasonal prediction of climate model for winter temperature is still low outside the tropics and the most models cannot give reliable results in many areas of China.So it is very important to carry prediction experiment of winter air temperature and expand valid prediction lead time,in order to meet the needs of the society.Based on NCC(National Climate Center of China)monthly surface air temperature data of160stations in China and NCEP/NCAR monthly mean reanalysis data during1979-2015,the predictive factors are selected from early winter geopotential height at500hPa and velocity potential at850and200hPa during1979/1980-2008/2009.Considering the combination of different predictive factors and their independence,the monthly rolling forecasting models are separately established by the multi variable regression ensemble,the cross validation test ensemble and the monthly rolling prediction ensemble,in order to perform independent predictive tests for the winter temperature in China during2010/2011-2014/2015.The velocity potential can reflect the external forcing source of atmospheric system,and500hPa height can denote the basic state of atmospheric circulation.Although the memory of internal evolution within atmosphere circulation is about a week or so,the initial time potential function at850and200hPa can reflect variations of the upper and lower level boundary forcing anomalies and their influences on the future atmosphere.Besides,it is simple and practical to select factors from the predictands on the above three levels.Results show that the multi variable regression ensemble(ENC1)may increase pred
关 键 词:逐月滚动预测 统计预测模型 多集合预测 冬季气温
分 类 号:P457.3[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222