基于光谱变换的高光谱指数土壤盐分反演模型优选  被引量:56

Optimization of soil salt inversion model based on spectral transformation from hyperspectral index

在线阅读下载全文

作  者:张贤龙 张飞[1,2,3] 张海威 李哲[1,2] 海清[4] 陈丽华 Zhang Xianlong;Zhang Fei;Zhang Haiwei;Li Zhe;Hai Qing;Chen Lihua(College of Resources and Environment Sciences, Xinjiang University, Urumqi, 830046, China;Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China;Key Laboratory of Smart City and Environmental Modeling of Higher Education Institute, Urumqi 830046, China;Engineering Research Center of Central Asia Geoinformation Development and Utilization, National Administration of Surveying, Mapping and Geoinformation, Urumqi 830002;Administrative Bureau of the National Nature Reserve in the Ebinur Lake Wetland, Bole 833400, China)

机构地区:[1]新疆大学资源与环境科学学院,乌鲁木齐830046 [2]新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046 [3]新疆智慧城市与环境建模自治区普通高校重点实验室,乌鲁木齐830046 [4]中亚地理信息开发利用国家测绘地理信息局工程技术研究中心,乌鲁木齐830002 [5]新疆艾比湖湿地国家级自然保护区管理局,博乐833400

出  处:《农业工程学报》2018年第1期110-117,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金"新疆联合基金本地优秀青年人才培养专项"(U1503302);国家自然科学基金(41361045)

摘  要:该文探索基于光谱变换建立光谱指数,进而建立土壤盐分反演模型的可行性。运用倒数、导数、对数等15种光谱变换对土壤含盐量进行反演,并利用原始光谱的波段反射率构造光谱指数对土壤盐分进行建模。在15种高光谱变换中,一阶微分R'和一阶对倒数(log1/R')变换下土壤盐分估算模型的精度较高。但总体而言,基于单一光谱变换和光谱指数的模型模拟精度均较低。采用光谱变换建立光谱指数,并进一步建立土壤盐分反演模型,结果表明,基于(log1/R')光谱变换构建归一化植被指数,然后建立的土壤盐分精度最高,经验证,其R2为0.89,均方根误差为3.34 g/kg,高于单一方法构建的模型,可为半干旱地区土壤盐分反演提供参考。At present,scholars at home and abroad already use the methods like spectral index or spectral transformation and so on to invert soil salinity separately.However,it is rare to study comprehensive modeling of soil salinity based on spectral index derived from different spectral transformations.In this paper,we studied the feasibility of establishing soil salinity model based on spectral index derived from spectral transformations.The study area was Lake Ebinur wetland nature reserve.Soil samples were collected in July and August in2016from32representative points.The intervals of sampling points were3-10km.The hyperspectral band reflectance of the sample was obtained by the ASD spectrometer.The positions of sampling points were recorded by a handy GPS.The reflectance curves were pretreated with mean value treatment,signal denoising and smoothness.Then,we used15kinds of spectral transformations,such as reciprocal,derivative,logarithm and so on.Meanwhile,the band reflectance of original spectrum was used to construct the spectral index to model the soil salinity.The spectral index included the difference soil index(DSI),simple ratio soil index(RSI)and normalized difference soil index(NDSI).On the basis of the modeling of soil salinity under a single spectral transformation or spectral index,we tried to establish the hyperspectral matrix coefficient map of soil salinity and the best spectral transformation of reflectance.Then a new hyperspectral estimation model was built in order to improve the estimation accuracy of soil salinity model.The model construction was based on randomly selected22samples and the model validation was based on the10samples.The mean of soil salinity for the calibration dataset and the validation dataset was8.33and8.44g/kg,respectively.The coefficient of variation of soil salinity for the calibration dataset and the validation dataset was60.53%and61.15%,respectively.The results showed that among the15spectral transformations,the correlations between the reflectance under the6transformations o

关 键 词:土壤 盐分 遥感 光谱变换 光谱指数 反演 

分 类 号:S127[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象