出 处:《International Journal of Minerals,Metallurgy and Materials》2018年第3期350-356,共7页矿物冶金与材料学报(英文版)
基 金:the financial support from the Ministry of Higher Education, Universiti Teknologi Malaysia via Grants of Vote: 08H42 and 4F752
摘 要:Novel ceramics from waste material made of(x) paper ash–(80-x) cullet–20 kaolin clay(10 wt% ≤ x ≤ 30 wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite(CaSiO_3), along with minor phases of γ-dicalcium silicate(Ca_2SiO_4) and quartz(SiO_2). The sample with a cullet content of 55 wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55 wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.Novel ceramics from waste material made of(x) paper ash–(80-x) cullet–20 kaolin clay(10 wt% ≤ x ≤ 30 wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite(CaSiO_3), along with minor phases of γ-dicalcium silicate(Ca_2SiO_4) and quartz(SiO_2). The sample with a cullet content of 55 wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55 wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.
关 键 词:ceramics CULLET glass PAPER ASH WOLLASTONITE structural PROPERTIES DIELECTRIC PROPERTIES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...