Towards Realizing Mandarin-Tibetan Bi-lingual Emotional Speech Synthesis with Mandarin Emotional Training Corpus  

在线阅读下载全文

作  者:Peiwen Wu Hongwu Yang Zhenye Gan 

机构地区:[1]College of Physics and Electronic Engineering, Northwest Normal University,Lanzhou 730070, China

出  处:《国际计算机前沿大会会议论文集》2017年第2期29-32,共4页International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)

摘  要:This paper presents a method of hidden Markov model (HMM)-based Mandarin-Tibetan bi-lingual emotional speech synthesis by speaker adaptive training with a Mandarin emotional speech corpus.A one-speaker Tibetan neutral speech corpus, a multi-speaker Mandarin neutral speech corpus and a multi-speaker Mandarin emotional speech corpus are firstly employed to train a set of mixed language average acoustic models of target emotion by using speaker adaptive training.Then a one-speaker Mandarin neutral speech corpus or a one-speaker Tibetan neutral speech corpus is adopted to obtain a set of speaker dependent acoustic models of target emotion by using the speaker adap-tation transformation. The Mandarin emotional speech or the Tibetan emotional speech is finally synthesized from Mandarin speaker depen-dent acoustic models of target emotion or Tibetan speaker dependent acoustic models of target emotion. Subjective tests show that the aver-age emotional mean opinion score is 4.14 for Tibetan and 4.26 for Mandarin. The average mean opinion score is 4.16 for Tibetan and 4.28 for Mandarin. The average degradation opinion score is 4.28 for Tibetan and 4.24 for Mandarin. Therefore, the proposed method can synthesize both Tibetan speech and Mandarin speech with high naturalness and emotional expression by using only Mandarin emotional training speech corpus.

关 键 词:Mandarin-Tibetan cross-lingual EMOTIONAL SPEECH SYNTHESIS hidden Markov model (HMM) Speaker adaptive training Mandarin-Tibetan cross-lingual SPEECH SYNTHESIS EMOTIONAL SPEECH SYNTHESIS 

分 类 号:C5[社会学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象