随机和模糊环境下绿色供应链网络优化设计  被引量:4

Optimal design of green supply chain network under stochastic and fuzzy environment

在线阅读下载全文

作  者:贾旭[1] 刘诚[1] JIA Xu;LIU Cheng(School of Mathematics and Statistics,Central South University,Changsha 410083,China)

机构地区:[1]中南大学数学与统计学院,湖南长沙410083

出  处:《铁道科学与工程学报》2018年第3期792-801,共10页Journal of Railway Science and Engineering

基  金:中南大学中央高校基本科研业务费专项资金资助项目(2016zzts218);国家自然科学基金资助项目(71210003)

摘  要:针对由工厂、配送中心和分销商组成的三级供应链,对该供应链网络中配送中心选址以及加工和运输过程中二氧化碳的排放量等问题进行研究,在随机和模糊环境下分别以供应链成本费用和碳排放量最小为目标,通过引入机会约束建立多目标绿色供应链网络不确定均衡模型,并用方差函数和风险函数来增加模型的稳定性;结合随机规划和模糊数学规划理论,运用蒙特卡洛模拟、样本均值逼近、机会约束规划和模糊期望等方法处理模型中的随机参数和模糊参数,将不确定模型清晰化;用分层次法、ε-约束法和加权的理想点法相结合来求解多目标模型,最后用数值算例证明了模型的可行性。In view of the three echelon supply chain,which is composed of the factory,the distribution center and the distributor.We research on the location of distribution center in supply chain network and the emission of carbon dioxide in the process and transportation of the supply chain network.To minimize the cost of supply chain and carbon dioxide emissions under stochastic and fuzzy environment.The model of multi-objective and green supply chain network uncertain equilibrium model is established by introducing the chance constraint,and the variance function and risk function are used to increase the robustness of the model.Based on the theory of stochastic programming and fuzzy mathematical programming,the stochastic and fuzzy parameters in the model are processed by Monte Carlo simulation,chance constrained programming and fuzzy mathematical expectation,thus the uncertainty model is clear.The multiple objective model is solved by the combination of the hierarchical sub method,theε?constraint method and the weighted ideal point method.At last,a numerical example is used to demonstrate the feasibility of the model.

关 键 词:多目标规划 蒙特卡洛模拟 样本均值逼近 机会约束规划 分层次法 ε-约束法 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象