检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王海艳[1,2,3] 肖亦康 Wang Haiyan;Xiao Yikang(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023;Jiangsu Key Laboratory of Big Data Security&Intelligent Processing,Nanjing 210023)
机构地区:[1]南京邮电大学计算机学院,南京210023 [2]江苏省无线传感网高技术研究重点实验室,南京210003 [3]江苏省大数据安全与智能处理重点实验室,南京210023
出 处:《计算机研究与发展》2018年第2期391-399,共9页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61772285;61373138)~~
摘 要:近年来,群组推荐由于其良好的实用价值得到了广泛关注.群组发现作为群组推荐的前提环节,其发现结果对推荐效果有着至关重要的影响,群组相似度越高,推荐的效果和稳定性越好.针对现有群组发现方法中存在忽略用户倾向具有时间迁移性和群组可重叠性展开研究,提出了一种基于密度峰值聚类的动态群组发现方法.该方法首先通过动态泊松分解得到量化的用户动态倾向,然后通过高阶奇异值分解预测不同的时间节点下用户对不同项目的倾向,并根据计算所得的用户倾向构建高相似度用户集合,最后利用改进的基于密度峰值的聚类算法对用户集合进行划分,实现群组发现.仿真实验对比结果表明:上述基于密度峰值聚类的群组发现方法具有更好的群组推荐效果.Group recommendation has recently received wide attention due to its significance in real applications.As a premier step of group recommendation,group discovery is very important and discovery results will impact a lot on the performance of group recommendation.The higher similarity the groups have,the better effectiveness and stability the recommendation results will possess.However,current group discovery methods seldom consider the dynamicity of users tendency with variance of time context,nor do they support the existence of groups overlapping.In order to address the problems above,a dynamic group discovery method based on density peaks clustering(DGD-BDPC)is put forward in this paper.In the proposed DGD-BDPC method,quantitative users dynamic tendency is firstly obtained by dynamic poisson factorization.And secondly,users tendency under different time nodes for various items will be predicted with the employment of high order singular value decomposition(HOSVD)and user sets with high similarity will then be built according to users tendency.Finally,user sets will be clustered with a modification of density peaks clustering algorithm and group discovery will be realized successfully.Experimental results show that the proposed dynamic group discovery method based on density peaks clustering has higher accuracy,lower error and better stability compared with some other methods.
关 键 词:时间上下文 动态性 相似度 密度峰值聚类 群组发现
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49