Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory  

Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory

在线阅读下载全文

作  者:A.GHORBANPOUR-ARANI F.KOLAHDOUZAN M.ABDOLLAHIAN 

机构地区:[1]Faculty of Mechanical Engineering, University of Kashan [2]Institute of Nanoscience & Nanotechnology, University of Kashan

出  处:《Applied Mathematics and Mechanics(English Edition)》2018年第4期529-546,共18页应用数学和力学(英文版)

基  金:Project supported by the University of Kashan(No.574600/33)

摘  要:This paper is concerned with a buckling analysis of an embedded nanoplate integrated with magnetoelectroelastic(MEE) layers based on a nonlocal magnetoelectroelasticity theory. A surrounding elastic medium is simulated by the Pasternak foundation that considers both shear and normal loads. The sandwich nanoplate(SNP) consists of a core that is made of metal and two MEE layers on the upper and lower surfaces of the core made of Ba Ti O3/Co Fe2 O4. The refined zigzag theory(RZT) is used to model the SNP subject to both external electric and magnetic potentials. Using an energy method and Hamilton’s principle, the governing motion equations are obtained, and then solved analytically. A detailed parametric study is conducted, concentrating on the combined effects of the small scale parameter, external electric and magnetic loads, thicknesses of MEE layers, mode numbers, and surrounding elastic medium. It is concluded that increasing the small scale parameter decreases the critical buckling loads.This paper is concerned with a buckling analysis of an embedded nanoplate integrated with magnetoelectroelastic(MEE) layers based on a nonlocal magnetoelectroelasticity theory. A surrounding elastic medium is simulated by the Pasternak foundation that considers both shear and normal loads. The sandwich nanoplate(SNP) consists of a core that is made of metal and two MEE layers on the upper and lower surfaces of the core made of Ba Ti O3/Co Fe2 O4. The refined zigzag theory(RZT) is used to model the SNP subject to both external electric and magnetic potentials. Using an energy method and Hamilton's principle, the governing motion equations are obtained, and then solved analytically. A detailed parametric study is conducted, concentrating on the combined effects of the small scale parameter, external electric and magnetic loads, thicknesses of MEE layers, mode numbers, and surrounding elastic medium. It is concluded that increasing the small scale parameter decreases the critical buckling loads.

关 键 词:sandwich nanoplate(SNP) refined zigzag theory(RZT) nonlocal magnetoelectroelasticity theory buckling magnetostrictive layer 

分 类 号:O343.1[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象