检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于巧[1] 姜淑娟[1,2] 张艳梅[1,3] 王兴亚[1] 高鹏飞[1] 钱俊彦 YU Qiao;JIANG Shu-Juan;ZHANG Yan-Mei;WANG Xing-Ya;GAO Peng-Fei;QIAN Jun-Yan(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221116;Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004;State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023)
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]桂林电子科技大学广西可信软件重点实验室,广西桂林541004 [3]南京大学计算机软件新技术国家重点实验室,南京210023
出 处:《计算机学报》2018年第4期809-824,共16页Chinese Journal of Computers
基 金:国家自然科学基金(61673384;61502497;61562015);广西可信软件重点实验室研究课题(kx201530);南京大学计算机软件新技术国家重点实验室开放课题(KFKT2014B19);江苏省普通高校研究生科研创新计划项目(KYLX15_1443);国家级大学生创新项目(201510290001)资助
摘 要:分类不平衡是指不同类别间样本数量分布不均衡的现象.在软件缺陷预测中,传统预测模型的性能可能会因数据集分类不平衡而受到影响.为了探究分类不平衡对软件缺陷预测模型性能的影响程度,该文提出一种分类不平衡影响分析方法.首先,设计一种新数据集构造算法,将原不平衡数据集转化为一组不平衡率依次递增的新数据集.然后,选取不同的分类模型作为缺陷预测模型,分别对构造的新数据集进行预测,并采用AUC指标来度量不同预测模型的分类性能.最后,采用变异系数C·V来评价各个预测模型在分类不平衡时的性能稳定程度.在8种典型的预测模型上进行实验验证,结果表明C4.5、RIPPER和SMO这3种预测模型的性能随着不平衡率的增大而下降,而代价敏感学习和集成学习能够有效提高它们在分类不平衡时的性能和性能稳定程度.与上述3种模型相比,逻辑回归、朴素贝叶斯和随机森林等模型的性能更加稳定.Class imbalance refers to that the number of samples in different classes is unbalanced.In the process of software defect prediction,the performance of traditional prediction models may be affected by the class imbalance problem of datasets.In order to explore the impact of class imbalance on the performance of software defect prediction models,this paper presents an approach to analyzing the impact of class imbalance.First,an algorithm is designed to construct new datasets,which could convert an original imbalanced dataset into a set of new datasets with imbalance ratio increased one by one.Second,different classification models are selected as the defect prediction models to predict on these new constructed datasets respectively.Moreover,AUC metric is used to measure the classification performance of different prediction models.Finally,Coefficient of Variation(C·V)is applied to evaluate the performance stability of each prediction model with class imbalance.The empirical study is conducted on eight typical prediction models.The results show that the performance of three prediction models,C4.5,RIPPER and SMO,are decreased with the increasing of imbalance ratio.However,cost-sensitive learning and ensemble learning could improve their performance and performance stability with class imbalance.Compared with the above three models,the performance of Logistic Regression,Naive Bayes and Random Forest models are more stable.
关 键 词:分类不平衡 软件缺陷预测 预测模型 不平衡率 代价敏感学习 集成学习
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30