检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖勇[1] 赵伟[1] 黄松岭[1] 张洪霞 Xiao Yong;Zhao Wei;Huang Songling(State Key Laboratory of Power System Tsinghua University,Beijing 100084,China)
机构地区:[1]电力系统国家重点实验室(清华大学),北京100084 [2]不详
出 处:《电工技术学报》2018年第7期1570-1578,共9页Transactions of China Electrotechnical Society
基 金:国家高技术研究发展计划(863计划)资助项目(2015AA050404)。
摘 要:为准确测量谐波功率,提出一种基于离散傅里叶级数的算法。误差分析表明,在非同步采样下,该算法误差较大,且其与电网实际频率的波动近似呈正比。针对此,通过修正三角基函数集和采用准同步迭代运算方式,提出减小计算量的方法,并对算法进行优化。仿真结果表明,稳态条件下,所提优化算法可适应电网频率±0.5 Hz的波动,计算准确度达10-6量级;在准稳态条件下,该算法用于谐波电能计量的准确度也高于对比的三种算法,验证了所提优化算法的有效性。In order to measure the harmonic power,this paper firstly proposes a new algorithm based on discrete Fourier series.The following error analysis presents that under asynchronous sampling,this algorithm cause large harmonic power error,which is proportional to the frequency fluctuation of the electricity grid system.Then this algorithm is optimized by modifying the set of triangular basis functions and adopting the quasi-synchronous iteration method,along with the simplification of the computation.The simulation results reveal that the proposed algorithm can adapt to the±0.5 Hz fluctuation of the grid frequency and reach the accuracy of 10-6 under the steady-state condition.In addition,the harmonic energy measurement maintains higher accuracy than that of the contrast algorithm under the quasi-steady-state condition,validating the effectiveness of the proposed algorithm.
关 键 词:谐波功率 傅里叶级数 准同步算法 频率波动 误差分析
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.163.51