基于改进的深度置信网络的电离层F2层临界频率预测  被引量:1

Ionosphere F2 layer critical frequency predict based on improved deep belief networks

在线阅读下载全文

作  者:唐智灵 吕晓朦 Tang Zhiling;Lyu Xiaomeng(Key Laboratory of Wireless Broadband Communications&Information Processing,Guilin University of Electronic Technology,Guilin Guangxi 541004,China;Institute of Electrical Engineering&Automation,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)

机构地区:[1]桂林电子科技大学无线宽带通信和信息处理重点实验室,广西桂林541004 [2]桂林电子科技大学电子工程与自动化学院,广西桂林541004

出  处:《计算机应用研究》2018年第3期825-829,共5页Application Research of Computers

基  金:国家自然科学基金资助项目(61461013);广西无线宽带通信与信号处理重点实验室基金资助项目(GXKL06160103);桂林电子科技大学创新团队基金资助项目

摘  要:提出一种基于深度置信网络(deep belief network,DBN)对本区域未来24 h的电离层临界频率f0F2预测的方法。对选取的数据集进行筛选,生成用于训练和测试的数据集;改进DBN基本单元的结构,以适应对连续型数据特征的提取与学习,再通过实验确定DBN的基本结构;最后利用训练数据集对改进后的网络进行训练,实现对f0F2值的预测。与实测值相比较,改进的DBN具有极佳的预测准确性;与浅层结构BP网络和SVM网络相比,改进的DBN不单克服了浅层结构所固有的问题,更表现出对于连续型数据预测的优异性能,尤其是当预测对象受到高维复杂因素影响时改进的DBN模型依旧能表现出很好的预测性能。This paper proposed a method which was predicting the ionospheric critical frequency f0F2 of the future 24h based on deep belief network(DBN).First,it filtered the data and processed into data sets for training and testing.Secondly,it improved the structure of the basic unit of DBN to adapt to the extraction and learning of continuous data feature,and then determined the basic structure of DBN through experiments.Finally,this paper used the training data set to train the improved network to realize the prediction of f0F2 value.Compared with the measured values,the improved DBN has excellent prediction accuracy.Compared with the shallow structure of BP network and SVM network,the improved DBN not only overcomes the inherent problems of the shallow structure,but also shows the excellent performance of continuous data prediction,especially when the prediction value is affected by high dimensional complex factors,the improved DBN model can still show good prediction performance.

关 键 词:f0F2预测 深度学习 深度置信网络 受限波尔兹曼机 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象