基于Lasso与RFE特征消除的RVM旋转机械故障预测  被引量:3

Fault prediction of RVM rotating machinery based on Lasso and RFE feature elimination

在线阅读下载全文

作  者:张媛媛 原思聪[1] 郭田奇 ZHANG Yuanyuan;YUAN Sicong;GUO Tianqi(School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China;School of Statistics,Lanzhou University of Finance and Economics,Lanzhou 730000,China)

机构地区:[1]西安建筑科技大学机电工程学院,西安710055 [2]兰州财经大学统计学院,兰州730000

出  处:《计算机工程与应用》2018年第8期149-153,共5页Computer Engineering and Applications

基  金:国家"十二五"科技支撑计划重点项目(No.2011BAJ02B02-02);陕西省科技攻关项目(No.2011K10-18);陕西省自然科学基金(No.2007E218)

摘  要:针对旋转机械故障诊断问题,提出一种基于相关向量机(RVM)的故障检测方法,RVM是一种用于回归和分类问题的贝叶斯稀疏核方法,其突出的优势是模型的稀疏性和预测的概率性。为进一步提高RVM模型的鲁棒性,减小样本数据中异常值对预测值的影响,针对Lasso方法进行特征选择时无法去除冗余特征的问题,提出以Lasso为底层算法的RFE递归特征消除方法去除样本数据集中无关特征和冗余特征。最后以工业环境下采集的数据作为样本集进行实验,同传统算法进行了比较,结果表明该方法在保持较高检测率的同时,提高了故障预测的时效性和稳定性。To solve the problem of rotating machinery fault diagnosis,a method based on correlation vector machine(RVM)is proposed,which is a Bayesian sparse kernel method for regression and classification.The prominent advantage of RVM is the sparseness of the model and the probability of prediction.In order to improve the robustness of RVM and reduce the influence of outliers on the predicted value,and solve the problem that the redundant feature can not be removed when Lasso method is used for feature selection,the RFE recursive feature elimination method using Lasso as the bottom algorithm is proposed to remove the irrelevant and redundant features of the sample data-set.Finally,the data collected in industrial environment is used as a sample set for testing and compared with the traditional algorithm,the results show that the method can improve the detection efficiency and maintain high detection rate.

关 键 词:旋转机械 相关向量机 故障诊断 特征消除 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象