检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭磊[1] 贺宏伟[1] 王玉军[1] 王昌元[1] 杨秀云[1] 刘露[1] GUO Lei;HE Hongwei;WANG Yujun;WANG Changyuan;YANG Xiuyun;LIU Lu(Taishan Medical University,Tai'an,271016)
机构地区:[1]泰山医学院,泰安市271016
出 处:《中国医疗器械杂志》2018年第2期92-94,98,共4页Chinese Journal of Medical Instrumentation
摘 要:医学图像中成像部位的识别是医学图像处理的关键技术。鉴于卷积神经网络优异的特征提取和分类识别能力,该文提出一种并行卷积神经网络结构,通过使用不同尺寸的卷积核,提取X线图像中不同尺寸大小的局部特征,实现图像中成像部位识别。实验分析可知,并行卷积神经网络能够提取更多维度和有代表性的图像特征,具有较强的医学图像中成像部位分类识别能力。Treatment position recognition in medical images is a key technique in medical image processing.Due to the excellent performance of convolutional neural networks on features extraction and classification,an architecture of parallel convolutional neural networks is proposed to recognize treatment positions in X-ray images,which uses convolution kernels of different sizes to extract local features of different sizes in these images.The experimental analysis shows that parallel convolution neural networks,which can extract representative image features with more dimensions,are competent to classify and recognize treatment positions in medical images.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.116.64