上皮乳头内毛细血管袢分型对预测食管癌前病变及浅表癌浸润深度的价值  被引量:2

The Value of Capillary Epithelial Tumor Typing in Predicting the Invasion Depth of Esophageal Precancerous and Superficial Cancer

在线阅读下载全文

作  者:黄新香 黄朝忠[1] 林海凤[1] 林玉霖 周旋光 薛鹏星 阮顺兴 HUANG Xin-xiang;HUANG Chao-zhong;LIN Hai-feng;LIN Yu-lin;ZHOU Xuan-guang;XUE Peng-xing;RUAN Shun-xing(Department of Endoscopy,the Affiliated Hospital of Putian College,Putian,Fujian Province,351100 China)

机构地区:[1]莆田学院附属医院内镜室,福建莆田351100

出  处:《中外医疗》2017年第36期47-49,52,共4页China & Foreign Medical Treatment

基  金:2014年莆田市科技计划项目(2014S11)

摘  要:目的探讨上皮乳头内毛细血管袢(IPCL)分型对预测食管浅表癌及癌前病变浸润深度的价值。方法便利选择2014年8月—2016年5月期间因各原因在莆田学院附属医院行常规胃镜检查的人员作为研究对象,共纳入食管癌前病变及浅表癌对象共148例,再行放大色素内镜比较术后病理。结果术前IPCL的Inoue’s分型和简易JES AB分型预估病灶浸润深度的准确率分别为85.1%和87.8%,IPCL分型预测浸润深度与术后病理比较差异无统计学意义(χ2=0.765,P=0.064 8),一致性检验IPCL分型结果可靠(Kappa系数=0.642,P=0.001)。结论 IPCL分型可较准确预测病灶浸润深度,有助于提高食管病变的诊断率和指导患者选择治疗方式。Objective This paper tries to investigate the value of intraepithelial capillary capillary loop(IPCL)typing in predicting the depth of invasion of superficial esophageal carcinoma and precancerous lesions.Methods A total of 148 patients with esophageal precancerous lesions or superficial cancer who underwent gastroscopy in this hospital from August 2014 to May 2016 were convenient selected,and were underwent magnified chromoendoscopy to evaluate the accuracy of IPCL classification.Results The accuracy of IPCL in Inoue’s classification and simple JES AB classification was 85.1%and 87.8%respectively.There was no significant difference between the IPCL classification and the postoperative pathological results(χ2=0.765,P=0.064 8).Consistency test showed that IPCL typing predicts was reliable(Kappa=0.642,P=0.001).Conclusion IPCL classification can accurately predict the invasive depth in the esophagus,which is help to improve the diagnosis rate and to guide the patients to choose treatment method.

关 键 词:食管浅表癌 癌前病变 IPCL 染色内镜 放大内镜 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象