检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李艳姣[1,2] 张森 尹怡欣[1,2] 张杰[1,2] LI Yan-jiao;ZHANG Sen;YIN Yi-xin;ZHANG Jie(School of Automation&Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China;Key Laboratory of Knowledge Automation for Industrial Processes,Ministry of Education,Beijing 100083,China)
机构地区:[1]北京科技大学自动化学院,北京100083 [2]北京科技大学工业过程知识自动化教育部重点实验室,北京100083
出 处:《控制理论与应用》2018年第3期324-334,共11页Control Theory & Applications
基 金:国家自然科学基金重点项目(61333002);国家自然科学基金项目(61673056)资助~~
摘 要:高炉炼铁是一个典型的高能耗、高排放、高污染的工业环节.合理的炉料分布能够形成更加合理的煤气流分布,使得炉内的化学反应更加充分,对高炉长期稳顺运行和节能减排具有重要作用.本文针对基于经验的料面形状决策不能根据炉况变化做出准确和及时的调控的缺陷,提出了基于数据驱动的高炉料面形状优化决策模型.首先,基于现场采集的数据,在考虑高炉生产实际情况约束和变量上下限约束的情况下,建立了以煤气利用率为评价函数的料面优化模型.然后,为了提高模型的精度和决策性能,提出了一种误差补偿超限学习机(extreme learning machine,ELM)方法用于建立料面优化过程模型,以减少模型与实际生产过程之间的误差.在此基础上,采用带有约束条件的自适应粒子群算法对模型进行求解.最后,通过仿真实验验证了所建模型和优化方法的有效性,实验结果表明所构建的高炉料面优化决策模型能够及时根据生产情况的变化给出合理的料面形状,满足现场生产的需求,使高炉高效稳定运行.Blast furnace ironmaking is a typical industrial process with high energy consumption,high emission and high pollution.The reasonable burden distribution can make the gas flow distribution more reasonable and the chemical reaction in the furnace more fully.It plays an important role in the long-stable operation and energy saving and emission reduction of blast furnace.For the difficulty to accurately adjust the burden surface by operators from their experience when the production situation changes,the optimization model of burden surface profile based on data driven is proposed.Firstly,taking the gas utilization ratio as the evaluation index,the burden surface optimization model is established based on the data collected from the blast furnace with considering the constrains of the actual situation and upper and lower bounds of the variables.Next,in order to improve the model accuracy and decision performance,a novel error compensation extreme learning machine(ELM)is proposed to establish the process model to reduce the error between the model and actual production process.On this basis,the adaptive particle swarm optimization(APSO)algorithm with constrains is applied for relative calculations.Finally,the validity of the model and the optimization method are verified by the simulation experiments.The simulation results demonstrate that this scheme can give a reasonable burden surface profile according to the change of production situation to meet the production demand and make the blast furnace work efficient and stable.
关 键 词:高炉布料 料面优化 煤气利用率 约束条件 超限学习机 自适应粒子群算法
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63