基于稀疏样本选优的机载雷达动目标检测算法  被引量:1

Moving target detection algorithm based on sparse recovery and sample selection for airborne radar

在线阅读下载全文

作  者:龚清勇[1] 王成燕 GONG Qingyong;WANG Chengyan(College of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)

机构地区:[1]南京邮电大学通信与信息工程学院,江苏南京210003

出  处:《系统工程与电子技术》2018年第5期1012-1017,共6页Systems Engineering and Electronics

基  金:国家自然科学基金(61601243);江苏省自然科学基金(BK20160915);江苏省高校自然科学研究项目(14KJB510024);南京邮电大学科研基金(NY214043)资助课题

摘  要:针对存在干扰目标的非均匀样本中机载雷达动目标检测性能下降问题,基于信号稀疏恢复技术,提出一种基于稀疏样本选优的机载雷达动目标检测算法,利用训练样本和待检测距离单元的稀疏性,选择训练样本中杂波的位置和检测单元中杂波的位置相似的训练样本,去除选优后训练样本中的干扰目标,克服干扰目标对机载雷达动目标检测性能的影响,采用处理后的训练样本和待检测距离单元的数据构建杂波协方差矩阵。通过仿真实验进行改善因子、距离单元输出功率、目标信号提取的比较,说明了本文算法能够提高机载雷达动目标检测性能。A moving target detection algorithm based on sparse recovery and sample selection for airborne radar is proposed,which overcomes interfering target in selected training samples,to solve the degradation of moving target detection probability in heterogeneous training samples.It makes full use of the sparse property of samples,and attempts to select training samples whose clutter locations are similar to that of the sample in the cell under test.Eliminate the interfering target in the selected training samples to overcome the influence on moving target detection probability.Use the processed training samples and the data of the undetected distance cell to construct the covariance matrix.Simulation experiments are carried out to compare the improvement factor,range cell output power and target signal extraction.The comparison shows that this method can improve moving target detection probability for airborne radar.

关 键 词:动目标检测 空时自适应处理 稀疏恢复 训练样本选优 干扰目标 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象