基于张量分解的大规模多输入多输出天线预编码  

Massive MIMO antenna precoding based on tensor decomposition

在线阅读下载全文

作  者:陈文娟 周小平[1] 王家南 李莉[1] 杨哲 Chen Wenjuan;Zhou Xiaoping;Wang Jianan;Li Li;Yang Zhe(The College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)

机构地区:[1]上海师范大学信息与机电工程学院,上海200234

出  处:《上海师范大学学报(自然科学版)》2018年第2期214-219,共6页Journal of Shanghai Normal University(Natural Sciences)

基  金:上海市自然科学基金项目(16ZR1424500)

摘  要:提出基于张量分解的大规模多输入多输出(MIMO)天线预编码方案,利用张量分解对高维天线发送数据的降维,保持数据的低秩多维结构特征,获得更加有效的数据表示;同时,通过联合天线和用户信号的空域和时域的相关性,实现发射分集,克服大规模MIMO信道衰落和降低发射误码.通过仿真结果表明该方案适用于大规模MIMO系统.在相同条件下,与传统方案相比,误比特率更低.A massive multiple input multiple output(MIMO)antenna precoding scheme based on tensor decomposition is proposed.The tensor decomposition is used to reduce the dimension of high-dimensional antennas,and the low-rank multidimensional structure characteristics of the data are maintained,so as to obtain more effective data representation.At the same time,by combining the correlation between the antenna and the airspace and time domain of users,to achieve transmit diversity,and to overcome massive MIMO channel fading and reduce transmission errors.The simulation results show that the proposed scheme is suitable for massive MIMO system.Under the same conditions,the bit error rate is lower than that of the traditional scheme.

关 键 词:大规模多输入多输出 张量分解 低秩结构 发射分集 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象