检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴玺[1] 张永 陈绪 许胜强 王训 WU Xi;ZHANG Yong;CHEN Xu;XU Shengqiang;WANG Xun(School of Computer and Information,Hefei University of Technology,Hefei 230009,China;Institute of Industry&Equipment Technology,Hefei University of Technology,Hefei 230009,China;Institute of Intelligent Machines,Chinese Academy of Sciences,Hefei 230031,China;Hospital Affiliated to Institute of Neurology,Anhui University of Chinese Medicine,Hefei 230061,China)
机构地区:[1]合肥工业大学计算机与信息学院,合肥230009 [2]合肥工业大学工业与装备技术研究院,合肥230009 [3]中国科学院合肥智能机械研究所,合肥230031 [4]安徽中医药大学神经病学研究所附属医院,合肥230061
出 处:《计算机工程与应用》2018年第9期218-223,共6页Computer Engineering and Applications
基 金:国家高等学校学科创新引智计划("111")(No.B14025);(佛山市科技创新团队资助)可穿戴设备研发创新团队(No.2015IT100095);广东省科技厅重大项目(No.2016B010108002);安徽省科技攻关计划项目(No.1501021042;No.1301042215)
摘 要:运动障碍是帕金森病(PD)患者的重要特征,步态信号分析可以为疾病诊断和康复治疗提供有力依据。现实中PD患者数量远小于正常人群,传统的机器学习方法不适合对正例样本数远多于反例的非平衡数据进行分类。为了准确地区分出PD患者和健康人,使用一种代价敏感支持向量机(CS-SVM)的方法来构建PD患者和健康人之间的步态信号分类模型。所有受试者的步态运动学特征数据是采用真实的U型电子步道系统提取的,并将特征数据转化为无量纲的形式来消除身高对时空属性的影响。实验结果表明使用这种CS-SVM方法得到的预测准确率和F-measure值分别达到了94.16%和87.08%,与传统的SVM方法相比性能更优。同时消除身高对时空属性的影响可以大幅提高识别性能,预测准确率和F-measure值分别达到94.81%和88.66%。Dyskinesia is the significant feature of Parkinson’s disease patient,therefore the data analysis on parkinsonian gait kinematic parameters can provide a strong basis for disease diagnosis and rehabilitation.The actual number of Parkinson’s disease is far less than the normal human.The traditional machine learning methods are not suitable to classify the imbalanced data directly.This paper proposes a Cost Sensitive Support Vector Machine(CS-SVM)approach to distinguish between healthy human and patients with Parkinson’s disease firstly.The entire subject’s gait data is extracted from real U-shape electronic walkway.The classification performance is also improved by transforming the extracting features into non-dimensional forms.The experimental results indicate that the CS-SVM method can achieve the prediction accuracy of 94.16%,and the F-measure value reaches 87.08%,while it achieves a better performance comparing traditional SVM and the recognition performance is significantly improved by eliminating the influence of height,the prediction accuracy and F-measure value reach 94.81%and 88.66%respectively.
关 键 词:步态分析 非平衡数据 电子步道系统 帕金森病 代价敏感支持向量机
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49