检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙明波[1] 马秋丽 雷俊辉 张炎亮[1] SUN Ming-bo;MA Qiu-li;LEI Jun-hui;ZHANG Yan-liang(School of Management Engineering,Zhengzhou University,Zhengzhou 450001,China)
出 处:《组合机床与自动化加工技术》2018年第7期97-99,共3页Modular Machine Tool & Automatic Manufacturing Technique
基 金:国家自然科学基金资助项目(71271194);河南省基础与前沿技术研究项目(162300410073)
摘 要:针对航空领域复合材料层板冲击损伤检出概率的影响因素复杂、不确定性难以进行准确预测的问题,将BP神经网络和模糊推理系统相结合,提出了一种基于自适应神经模糊推理系统(Adaptive Neuron Fuzzy Inference System,ANFIS)的冲击损伤目视检测检出概率预测方法。首先利用仿真函数验证预测模型的有效性,然后以实验数据为例进行仿真分析,与传统的BP神经网络和支持向量机预测模型进行比较。仿真和实验结果表明,自适应神经模糊推理系统预测模型在目视检测损伤检出概率预测中具有更高的精度。Aiming at the problem that the influencing factors of the impact damage of composite laminates in the aviation field are complex and uncertain,and it is difficult to be accurately predicted.An adaptive neural fuzzy inference system risk detection method for visual inspection of impact damage is proposed,which combined a BP neural network and a fuzzy reasoning system.Firstly,the validity of the model is verified by the simulation function.Then,the experimental data are taken as an example to simulate and compare with the traditional BP neural network and support vector machine prediction model.The simulation and experimental results show that the adaptive neural fuzzy reasoning system prediction model has higher accuracy in visual detection of damage detection probability prediction.
分 类 号:TH165[机械工程—机械制造及自动化] TG506[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117