基于流行排序的前景背景显著性检测算法  被引量:8

Saliency Detection Combined Foreground with Background Based on Manifold Ranking

在线阅读下载全文

作  者:刘亚宁[1] 吴清[1] 魏雪 LIU Ya-ning;WU Qing;WEI Xue(School of Computer Science and Engineering,Hebei University of Technology,Tianjin 300401,China)

机构地区:[1]河北工业大学计算机科学与软件学院,天津300401

出  处:《科学技术与工程》2018年第18期74-81,共8页Science Technology and Engineering

基  金:河北省自然科学基金(F2015202239);天津市科技计划(15ZCZDNC00130)资助

摘  要:为准确提取图像显著区域,提出基于流行排序的前景背景显著性检测算法。首先,采用SLIC(simple linear iterative clustering)方法对经平滑处理的图像进行超像素分割。然后以超像素作为图中节点,采用自适应参数计算节点之间的权重以解决因采用固定值导致的图像效果不理想的问题。其次,在计算背景查询节点时,通过阈值剔除边界超像素中不属于背景的像素,以保留合适的查询节点,避免因显著目标位于图像边界而错把非背景像素标记为背景查询节点的问题。最后,因前景优先方法可以有效抑制背景噪声,而背景优先方法对背景噪声抑制不足,但可均匀突出前景目标。因此,采用相乘或者取平均的方式融合前景背景显著图以得到最终的显著图。在公开数据集MSRA、SED2及ECSSD上与其他算法进行实验对比,实验结果证明了算法的有效性。In order to detect salient object accurately in the image,a method based on manifold ranking which combining foreground and background is proposed.Firstly,the simple linear iterative clustering(SLIC)algorithm was adopted to divide the input images which have been smoothed into super-pixels.And instead of using fixed values,the weights which between nodes was calculated by adaptive parameters to solve the problem of poor image results caused by fixed values.Secondly,to avoid the problem that the salient object was often mistaken as background query node when it is located at the image boundary.Boundary super-pixels used threshold were eliminated which are not belonging to background.Finally,since the foreground method can suppress background noise well,while background method can highlight the foreground object evenly although it is not enough to suppress noise.Thus,the final map was got after integrate foreground and background saliency map which obtained by manifold ranking.Experimental results on benchmark databases MSRA,SED2 and ECSSD demonstrate the proposed method performs well.

关 键 词:显著性检测 超像素 流行排序 前景 背景 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象