检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹生让[1,2] 丁晓群[1] 王庆燕[3] 张静[3] CAO Shengrang;DING Xiaoqun;WANG Qingyan;ZHANG Jing(College of Energy and Electrical Engineering,Hohai University,Nanjing 210098,China;Jiangsu Union Technical Institute,Nanjing Branch,Nanjing 210019,China;Institute of Technology and Electrical Engineering,Jinling Institute of Technology Electrical Engineering,Nanjing 211169,China)
机构地区:[1]河海大学能源与电气学院,江苏南京210098 [2]江苏联合职业技术学院南京分院,江苏南京210019 [3]金陵科技学院机电工程学院,江苏南京211169
出 处:《中国电力》2018年第7期21-27,共7页Electric Power
基 金:江苏省青年科学基金资助项目(BK20150115)~~
摘 要:针对粒子群算法在高维复杂问题寻优时易陷入局部寻优的现象,提出了反向云自适应粒子群算法(OCAPSO),通过反向学习加快算法的收敛速度,使用云模型来平衡粒子的全部搜索和局部搜索能力,使用自适应突变机制增强种群的多样性。用高维广义Schwarz函数对OCAPSO的有效性进行验证,进一步以IEEE30节点系统进行单目标和多目标无功优化测试并将测试结果与粒子群优化(PSO),进化算法(EA)等测试结果进行比较,证实了该算法的优越性。分析表明,OCAPSO算法用于解决多目标无功优化问题有效可行。An opposition-based cloud model adaptive particle swarm optimization algorithm(OCAPSO)is presented to solve the high-dimensional problems that the conventional PSO algorithm is easy to fall into a locally optimized point.The algorithm convergence speed is accelerated through opposition-based learning,and the cloud model is used to balance the global and local search ability of each particle,and the adaptive mutation mechanism is used to enhance the population diversity.The effectiveness of OCAPSO is verified by high-dimensional generalized Schwarz function.Then single objective and multi-objective reactive power optimization of IEEE30 bus system are tested.The superiority of OCAPSO is confirmed by comparing with the testing results of PSO and EA.Analysis shows that OCAPSO is effective for multi-objective reactive power optimization.
关 键 词:无功优化 粒子群优化 反向学习 云模型 自适应 多目标
分 类 号:TM714.3[电气工程—电力系统及自动化] TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15