机构地区:[1]School of Metallurgy and Environment,Central South University [2]Canmet MINING,Natural Resources Canada [3]Process Metallurgy & Modelling Group,Department of Materials Science and Engineering,University of Toronto
出 处:《International Journal of Minerals,Metallurgy and Materials》2018年第8期881-891,共11页矿物冶金与材料学报(英文版)
摘 要:The slag cleaning(or matte settling) process was experimentally investigated at 1573 K using a fayalitic nickel converter slag containing spinel and matte/alloy particles.The addition of various amounts of spent potlining(SPL) was studied in terms of its influence on matte settling and the overall metal recoveries.The slags produced were characterized by scanning electron microscopy,energy-dispersive spectroscopy,and wet chemical analysis using inductively coupled plasma optical emission spectrometry.The presence of solid spinel particles in the molten slag hindered coalescence and settling of matte/alloy droplets.Matte settling was effectively promoted with the addition of as little as 2 wt% SPL because of the reduction of spinel by the carbonaceous component of the SPL.The reduced viscosity of the molten slag in the presence of SPL also contributed to the accelerated matte settling.Greater metal recoveries were achieved with larger amounts of added SPL.Fast reduction of the molten slag at 1573 K promoted the formation of highly dispersed metal particles/clusters via accelerated nucleation in the molten slag,which increased the overall slag viscosity.This increase in viscosity,when combined with rapid gas evolution from accelerated reduction reactions,led to slag foaming.The slag cleaning(or matte settling) process was experimentally investigated at 1573 K using a fayalitic nickel converter slag containing spinel and matte/alloy particles.The addition of various amounts of spent potlining(SPL) was studied in terms of its influence on matte settling and the overall metal recoveries.The slags produced were characterized by scanning electron microscopy,energy-dispersive spectroscopy,and wet chemical analysis using inductively coupled plasma optical emission spectrometry.The presence of solid spinel particles in the molten slag hindered coalescence and settling of matte/alloy droplets.Matte settling was effectively promoted with the addition of as little as 2 wt% SPL because of the reduction of spinel by the carbonaceous component of the SPL.The reduced viscosity of the molten slag in the presence of SPL also contributed to the accelerated matte settling.Greater metal recoveries were achieved with larger amounts of added SPL.Fast reduction of the molten slag at 1573 K promoted the formation of highly dispersed metal particles/clusters via accelerated nucleation in the molten slag,which increased the overall slag viscosity.This increase in viscosity,when combined with rapid gas evolution from accelerated reduction reactions,led to slag foaming.
关 键 词:converter SLAG SPENT potlining MATTE NICKEL MATTE SETTLING FAYALITE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...