检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:BAI Wei-wei REN Jun-sheng LI Tie-shan
机构地区:[1]Navigation College, Dalian Maritime University
出 处:《China Ocean Engineering》2018年第3期288-300,共13页中国海洋工程(英文版)
基 金:financially supported in part by the National High Technology Research and Development Program of China(863Program,Grant No.2015AA016404);the National Natural Science Foundation of China(Grant Nos.51109020,51179019 and 51779029);the Fundamental Research Program for Key Laboratory of the Education Department of Liaoning Province(Grant No.LZ2015006)
摘 要:This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method’s advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.This paper explores a highly accurate identification modeling approach for the ship maneuvering motion with fullscale trial. A multi-innovation gradient iterative(MIGI) approach is proposed to optimize the distance metric of locally weighted learning(LWL), and a novel non-parametric modeling technique is developed for a nonlinear ship maneuvering system. This proposed method's advantages are as follows: first, it can avoid the unmodeled dynamics and multicollinearity inherent to the conventional parametric model; second, it eliminates the over-learning or underlearning and obtains the optimal distance metric; and third, the MIGI is not sensitive to the initial parameter value and requires less time during the training phase. These advantages result in a highly accurate mathematical modeling technique that can be conveniently implemented in applications. To verify the characteristics of this mathematical model, two examples are used as the model platforms to study the ship maneuvering.
关 键 词:multi-innovation gradient iterative(MIGI) locally weighted learning(LWL) IDENTIFICATION nonlinearship maneuvering full-scale trial
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249