检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段宗涛[1] 张凯 杨云[1] 倪园园 SAURAB Bajgain DUAN Zong-tao;ZHANG Kai;YANG Yun;NI Yuan-yuan(School of Information Engineering,Chang'an University,Xi'an 710064,China)
出 处:《交通运输系统工程与信息》2018年第4期215-223,共9页Journal of Transportation Systems Engineering and Information Technology
基 金:中央高校基本科研业务费创新团队支持项目(300102248404);陕西省重点科技创新团队项目(2017KCT-29);陕西省工业攻关项目(2018GY-136).
摘 要:利用海量的离线GPS数据进行出租车需求预测是智能城市与智能交通系统的重要组成部分.本文提出了一种基于深度学习的出租车需求预测方法(CNN-LSTM-ResNet),将出租车GPS数据和天气数据等转化为栅格数据,输入模型获得预测结果.该模型先使用卷积神经网络(CNN)提取城市范围交通流量的空间特征,然后引入残差单元加深网络层数,并利用长短期记忆网络(LSTM)提取GPS数据的临近性、周期性和趋势性,最后通过权重融合以上3个分量,并与外部因素(天气、节假日和空气质量指数)进一步融合,从而预测城市特定区域的出租车需求.采用西安市出租车GPS数据进行实验验证,结果表明,该模型与传统预测模型(如ARIMA,CNN,LSTM)相比具有更高的预测精度.To forecast the demand of the taxi,it is significant part of smart city and intelligent traffic system to use large amount of off-line GPS data.A deep learning-based,CNN-LSTM-ResNet,is proposed for the demand of taxi in this paper.We converted GPS data of taxi and weather data into raster data,and put them into the model as input to obtain the predictions.Firstly,Convolutional Neural Network(CNN)is used to extract the spatial features of urban traffic flow,and Residual Units to deepen the layers of network,then to extract the temporal proximity,periodicity and tendency of the GPS data,Long Short-Term Memory(LSTM)is used.Finally,to predict the demand of taxi in specific areas of the city,three components are fused by the corresponding weights,and the syncretic result is combined with external factors,like the weather,holiday and air quality index.The experiments are conducted on taxi GPS data of Xi’an,and the result shows that prediction accuracy of proposed model is much more higher than the traditional models such as ARIMA,CNN and LSTM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3