检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛培峰[1] 王枭飞 刘楠[2] 王愿宁 常玲芳[1] 张先臣[1] NIU Peifeng;WANG Xiaofei;LIU Nan;WANG Yuanning;CHANG Lingfang;ZHANG Xianchen(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China;Yanshan University,Qinhuangdao 066004,Hebei,China;College of Environment Science and Engineering,Dalian Maritime University,Dalian 116026,Liaoning,China)
机构地区:[1]燕山大学电气工程学院,河北秦皇岛066004 [2]燕山大学,河北秦皇岛066004 [3]大连海事大学环境科学与工程学院,辽宁大连116026
出 处:《化工学报》2018年第9期3924-3931,共8页CIESC Journal
基 金:国家自然科学基金项目(61573306)~~
摘 要:针对极限学习机(ELM)不能准确地预测汽轮机热耗率的问题,结合群智能优化算法,提出一种改进的共生生物搜索算法和极限学习机(ASOS-ELM)综合建模的方法。该方法利用改进的共生生物搜索(ASOS)算法优化ELM隐层激活函数的参数,求得最优的ELM模型。再将ASOS-ELM模型应用到热耗率建模中,首先用ELM初始化热耗率预测模型,以输出热耗率的均方根误差(RMSE)作为算法的适应度值,然后通过ASOS算法找到合适的ELM参数,从而得到准确的热耗率预测模型。并将热耗率预测的结果与传统的ELM模型、ASOS算法优化支持向量回归(SVR)模型、改进的粒子群算法(PSO)和基本的共生生物搜索算法(SOS)优化的ELM作对比。结果表明,ASOSELM模型在处理复杂的数据模型中,具有精确的预测能力与快速的收敛速度,为汽轮机热耗率建模提供了新思路。The extreme learning machine(ELM)problem can not quickly and accurately predict heat rate.Combined with swarm intelligence optimization algorithm,an ameliorated symbiotic organisms search algorithm and extreme learning machine(ASOS-ELM)comprehensive modeling method is proposed.This method uses the ameliorated symbiotic organisms search(ASOS)algorithm to optimize the parameters of the ELM hidden layer activation function to obtain the optimal ELM model.Firstly,the initial heat rate prediction model is established with ELM,and the root mean square error(RMSE)of the output heat rate is used as the fitness value of the algorithm.Then the appropriate ELM parameters are found through the ASOS algorithm to obtain an accurate heat rate prediction model.The performance of the heat rate prediction is compared with the traditional ELM model,support vector regression(SVR)model optimized by the ASOS algorithm,ELM optimized by improved particle swarm optimization(PSO)and basic symbiotic organisms search algorithm(SOS).The results show that the ASOS-ELM model has a precise forecasting ability and rapid convergence speed when dealing with complex data models,which provides a new idea for modeling the heat rate of a steam turbine.
分 类 号:TK267[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52