On the trajectory of nonturbulent liquid jets in subsonic crossflows at different density ratios  被引量:1

On the trajectory of nonturbulent liquid jets in subsonic crossflows at different density ratios

在线阅读下载全文

作  者:Mehdi Jadidi Ali Dolatabadi 

机构地区:[1]Department of Mechanical, Industrial and Aerospace Engineering, Concordia University

出  处:《Theoretical & Applied Mechanics Letters》2018年第4期277-283,300,共8页力学快报(英文版)

基  金:support provided by Concordia University

摘  要:Numerical simulations using volume of fluid(VOF)method are performed to study the impact of liquid-to-gas density ratio on the trajectory of nonturbulent liquid jets in gaseous crossflows.In this paper,large eddy simulation(LES)turbulence model is coupled with the VOF method to describe the turbulence effects accurately.In addition,dynamic adaptive mesh refinement method with two refinement levels is applied to refine the size of the cells located at gas-liquid interface.Density ratio is changed from 10 to 5000 while other nondimensional numbers are kept constant.Large density ratios are considered in this paper since they are common in many practical applications such as solution precursor/suspension plasma sprays.Our simulations show that the penetration height,especially in the farfield,increases as the density ratio increases.A general correlation for the jet trajectory,which can be used for a wide range of density ratios,is developed based on our simulation results.Numerical simulations using volume of fluid(VOF)method are performed to study the impact of liquid-to-gas density ratio on the trajectory of nonturbulent liquid jets in gaseous crossflows.In this paper,large eddy simulation(LES)turbulence model is coupled with the VOF method to describe the turbulence effects accurately.In addition,dynamic adaptive mesh refinement method with two refinement levels is applied to refine the size of the cells located at gas-liquid interface.Density ratio is changed from 10 to 5000 while other nondimensional numbers are kept constant.Large density ratios are considered in this paper since they are common in many practical applications such as solution precursor/suspension plasma sprays.Our simulations show that the penetration height,especially in the farfield,increases as the density ratio increases.A general correlation for the jet trajectory,which can be used for a wide range of density ratios,is developed based on our simulation results.

关 键 词:Primary BREAKUP Liquid JET Density ratio Gaseous CROSSFLOW SPRAY TRAJECTORY 

分 类 号:O3[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象