检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚钊健 谭台哲[1] YAO Zhaojian;TAN Taizhe(School of Computers,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《计算机工程》2018年第9期203-211,217,共10页Computer Engineering
摘 要:已有基于图的流形排序显著性检测方法由于对背景先验假设过于理想,存在前景种子区域选取不准确的问题,从而影响检测效果。为此,提出一种新的显著性检测算法。通过计算图像的颜色增强Harris特征点,形成一个能够包含前景区域的凸包,并对图像进行超像素分割,计算凸包内与凸包外所有超像素的差异度来选取前景种子。使用不同的区域特征描述子构建2个闭环无向图模型,分别将选取到的前景种子作为查询节点,采用经典的流形排序算法计算获得对应的显著图,融合2个显著图并作优化处理得到最终的显著图。在公开的MSRA10K和ECSSD数据集上进行实验,结果表明,该算法在准确率、召回率、F值和M AE值等评价指标方面均优于传统的流形排序检测方法,其检测效果既能准确突出显著性目标,又能有效地抑制背景区域的干扰。Existing saliency detection method based on graph-based manifold ranking has the problem that the foreground seeds cannot be accurately selected because of idealistic prior background assumption,which influences the detection result.For this problem,a new saliency detection algorithm is proposed.The convex hull is got by calculating Harris feature corner of an original image to roughly estimate the location of salient region.Then,the original image is segmented into superpixels and the foreground seeds can be selected by calculating the dissimilarity between the superpixels inside and outside the convex hull.Two close-loop undirected graphs are constructed by using different regional feature descriptors.Accordingly,taking the selected foreground seeds as query nodes,two saliency maps are generated by adopting classical graph-based manifold ranking algorithm based on corresponding graphs.These two saliency maps are integrated and the result is further optimized to obtain a final saliency map.Experiments on the public MSRA10K and ECSSD data sets are done and the results show that the proposed method can outperforms the traditional graph-based manifold ranking algorithm on better precision rate,recall rate,F-measure and MAE value,and the detection result of the proposed method not only can accurately highlight the salient object in an image,but can suppresses the interference of the background area effectively.
关 键 词:显著性检测 流形排序 凸包先验 显著图 优化功能
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222