检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:P.B.SAMPATH KUMAR B.MAHANTHESH B.J.GIREESHA S.A.SHEHZAD
机构地区:[1]Department of Studies and Research in Mathematics, Kuvempu University [2]Department of Mathematics, Christ University [3]Department of Mathematics, COMSATS Institute of Information Technology
出 处:《Applied Mathematics and Mechanics(English Edition)》2018年第9期1311-1326,共16页应用数学和力学(英文版)
基 金:University Grant Commission (UGC),New Delhi,for their financial support under National Fellowship for Higher Education (NFHE) of ST students to pursue M.Phil/PhD Degree (F117.1/201516/NFST201517STKAR2228/ (SAIII/Website) Dated:06-April-2016);the Management of Christ University,Bengaluru,India,for the support through Major Research Project to accomplish this research work
摘 要:A nonlinear flow of Jeffrey liquid with Cattaneo-Christov heat flux is investigated in the presence of nanoparticles. The features of thermophoretic and Brownian movement are retained. The effects of nonlinear radiation, magnetohydrodynamic(MHD), and convective conditions are accounted. The conversion of governing equations into ordinary differential equations is prepared via stretching transformations. The consequent equations are solved using the Runge-Kutta-Fehlberg(RKF) method. Impacts of physical constraints on the liquid velocity, the temperature, and the nanoparticle volume fraction are analyzed through graphical illustrations. It is established that the velocity of the liquid and its associated boundary layer width increase with the mixed convection parameter and the Deborah number.A nonlinear flow of Jeffrey liquid with Cattaneo-Christov heat flux is investigated in the presence of nanoparticles. The features of thermophoretic and Brownian movement are retained. The effects of nonlinear radiation, magnetohydrodynamic(MHD), and convective conditions are accounted. The conversion of governing equations into ordinary differential equations is prepared via stretching transformations. The consequent equations are solved using the Runge-Kutta-Fehlberg(RKF) method. Impacts of physical constraints on the liquid velocity, the temperature, and the nanoparticle volume fraction are analyzed through graphical illustrations. It is established that the velocity of the liquid and its associated boundary layer width increase with the mixed convection parameter and the Deborah number.
关 键 词:nonlinear convection Jeffrey liquid nanoliquid convective condition thermophoretic Brownian motion
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79