非平稳色噪声背景下非相关与相干信源数估计算法  

Uncorrelated and Coherent Signals Number Estimationin in the Presence of Nonuniform Noise

在线阅读下载全文

作  者:陈明建 黄中瑞 龙国庆 韩旭[1] CHEN Mingjian;HUANG Zhongrui;LONG Guoqing;HAN Xu(Electronic Countermeasure Institute,National University of Defense Technology,Hefei 230037,China)

机构地区:[1]国防科技大学电子对抗学院,合肥安徽230037

出  处:《探测与控制学报》2018年第4期40-46,共7页Journal of Detection & Control

基  金:安徽省自然科学基金项目资助(1608085QF140)

摘  要:在空间色噪声背景下传统基于信息论准则的信源数估计算法性能将下降,且无法实现非相关信源与相干信源并存时信源数估计。针对该问题,提出了非平稳色噪声背景下非相关与相干信源数估计算法。该算法利用特征值总体最小二乘线性拟合,估计得到非相关信源和相干信源组数的联合估计,然后通过空间差分平滑剔除非相关信源,最后利用线性拟合技术实现相干信源数估计。仿真结果表明,与基于信息论准则的信源数估计算法相比,所提算法能实现非相关与相干信源数的联合估计,检测信源数可以超过阵元数,尤其对于角度相近的信源,信源数估计性能更优。Most existing source enumeration techniques,which are based on information theoretic criteria,have a satisfactory performance under the circumstances of uncorrelated signals and white noise.In order to solve the problem that the performance degradation of information theory method under the circumstances of spatially non-stationary noise and the coexistence of uncorrelated and coherent signals,a new estimation method of signal source number was proposed.In the proposed method,the uncorrelated sources and coherent signal group number was firstly estimated based on the total least squares(TLS)fitting with the eigenvalues.Then the uncorrelated signals and nonuniform noise could be eliminated from spatial difference smoothing.Finally the number of coherent signals is estimated based on the TLS fitting method.Simulation results validated the effectiveness of the presented approach and it still has better performance even when the total number of incident sources exceeded that of array elements.By comparing with some conventional algorithms,the method could effectively improve the estimation performance for closely spaced sources.

关 键 词:阵列信号处理 相干信号 信源数估计 空间差分 均匀线阵 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象