基于堆叠降噪自编码器的异质网络的层次构建与节点分类  被引量:3

Hierarchy Construction and Classification of Heterogeneous Information Networks Based on Stacked Denoising Auto Encoder

在线阅读下载全文

作  者:蒋宗礼 张津丽 杜永萍 王光亮 JIANG Zongli;ZHANG Jinli;DU Yongping;WANG Guangliang(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)

机构地区:[1]北京工业大学信息学部,北京100124

出  处:《北京工业大学学报》2018年第9期1217-1226,共10页Journal of Beijing University of Technology

基  金:国家科技支撑计划子课题资助项目(2013BAH21B02-01);北京市自然科学基金资助项目(4153058);上海市智能信息处理重点实验室开放基金资助项目(IIPL-2014-004)

摘  要:针对传统特征抽取方法不能很好解决含有丰富语义信息和复杂网络结构的异质网的数据稀疏和噪声问题,利用堆叠降噪自编码器进行特征抽取,有利于松弛策略建立其类别层次结构,完成节点的分类和排序.在计算机科学文献库(digital bibliography&library project,DBLP)数据集上的实验结果表明:相比于其他分类算法,该方法分类性能更优,精确率可达86.3%.The problem of data with noise and sparsity of heterogeneous information networks can not be solved by the traditional feature extraction methods efficiently due to their semantics and complicated structure.Stacked denoising auto encoder was introduced to learn the features of sample.The relax strategy was employed to construct class hierarchy with high-quality,and then the nodes of the heterogeneous information network were classified and ranked.Experimental results on the dataset of DBLP(digital bibliography&library project)show that the method is effective,and the precision of classification is 86.3%.

关 键 词:异质网 松弛策略 堆叠降噪自编码器 层次构建 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象