检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵威[1,2,3] 卜令泽[1] 王伟 ZHAO Wei;BU Ling-ze;WANG Wei(School of Civil Engineering,Harbin Institute of Technology,Harbin,150090,China;Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education,Harbin Institute of Technology,Harbin,150090,China;Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology,Harbin Institute of Technology,Harbin,150090,China)
机构地区:[1]哈尔滨工业大学土木工程学院,哈尔滨150090 [2]结构工程灾变与控制教育部重点实验室,哈尔滨150090 [3]土木工程智能防灾减灾工业与信息化部重点实验室,哈尔滨150090
出 处:《工程力学》2018年第9期44-53,共10页Engineering Mechanics
基 金:国家自然科学基金面上项目(11572106)
摘 要:为解决传统多项式混沌展开方法在高维全局灵敏度和结构可靠度分析当中存在的维数灾难与多重共线性问题,该文提出一种稀疏偏最小二乘回归-多项式混沌展开代理模型方法。该方法首先采用偏最小二乘回归技术得到多项式混沌展开系数的初步估计,然后根据回归误差阈值允许下的最大稀疏度原则,采用带有惩罚的矩阵分解技术自适应地保留与结构响应相关性强的多项式,并采用偏最小二乘回归得到多项式混沌展开系数的更新估计。通过对展开系数进行简单后处理即可得到Sobol灵敏度指数。在此基础上保留重要输入变量并按新方法重新进行回归可实现对代理模型的精简,从而在不增加计算代价的情况下实现高精度结构可靠度分析。算例结果表明在保证精度的情况下,采用新方法进行全局灵敏度和结构可靠度分析比传统方法在计算效率方面有显著优势。To circumvent the curse of dimensionality and multicollinearity problems of traditional polynomial chaos expansion approach when analyzing global sensitivity and structural reliability of high-dimensional models,this paper proposes a sparse partial least squares regression-polynomial chaos expansion metamodeling method.Firstly,an initial estimation of polynomial chaos expansion coefficients is obtained with the partial least squares regression.Secondly,according to the principle of maximum sparsity under the allowance of regression error threshold,polynomials which have strong correlation with the structural response are adaptively retained with the penalized matrix decomposition scheme.Next,an updated estimation of the polynomial chaos expansion coefficients is obtained with the partial least squares regression.Sobol sensitivity indices are obtained with a simple post-processing of the expansion coefficients.Finally,the metamodel is greatly simplified by regressing with important inputs,leading to accurate estimations of the failure probability without additional computational cost.The results show that with acceptable accuracies,the new method overperforms the traditional counterpart in terms of computational efficiency when solving high-dimensional global sensitivity and structural reliability analysis problems
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28