检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹洋洋[1] 林意[1] 王智博[1] 鲍国强 Cao Yangyang;Lin Yi;Wang Zhibo;Bao Guoqiang(School of Digital&Media,Jiangnan University,Wuxi Jiangsu 214122,China)
出 处:《计算机应用研究》2018年第9期2638-2642,2647,共6页Application Research of Computers
摘 要:针对传统的动态时间弯曲算法的性能容易受到离群点以及局部噪声点的影响,同时对于复杂数据的处理能力较差,提出基于形态距离及自适应权重的相似性度量算法。该算法首先利用l1趋势滤波对原始待比较序列进行降维、压缩;其次引入形态距离计算两时间序列的距离矩阵;最后利用自适应赋权的距离函数抽取出各个子序列所含的信息量差异并结合动态时间弯曲完成最终时间序列相似度量。实验表明,该算法有更强的鲁棒性,能够更好地利用序列的形态特征完成宏观的相似性度量,同时在处理复杂数据时更加精确、高效、稳定。The performance of the traditional dynamic time bending algorithm is susceptible to outliers and local noise points,and the processing capacity of complex data is poor.In this regard,this paper proposed a similarity measure based on morphological distance and adaptive weight.The algorithm first used the l 1 trend filter to reduce the dimension and compression of the original comparison sequence.Secondly,the algorithm introduced morphological distance to calculate the distance matrix of two time series.Finally,the algorithm used the distance function of adaptive weight to extract the difference of information contained in each sub-sequence and completed the final time series similarity measure with dynamic time bending.Experiments show that the algorithm has stronger robustness and can make better use of the morphological features of the sequence to complete the macro similarity measure,while dealing with complex data more accurate,efficient and stable.
关 键 词:时间序列 相似性度量 动态时间弯曲 形态距离 自适应赋权
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15