基于GA-Elman的河流水位预测方法研究  被引量:13

Prediction of River Water Level by GA-Elman Model

在线阅读下载全文

作  者:要震 许继平[1] 孔建磊 刘松波 YAO Zhen;XU Ji-ping;KONG Jian-lei;LIU Song-bo(School of Computer and Information Engineering,Beijing Technology and Business University, Beijing 100048,China;Beijing Water Authority,Beijing 100038,China)

机构地区:[1]北京工商大学计算机与信息工程学院,北京100048 [2]北京市水务局办公室,北京100038

出  处:《长江科学院院报》2018年第9期34-37,共4页Journal of Changjiang River Scientific Research Institute

基  金:国家自然科学基金面上项目(51179002);北京市市属高校创新能力提升计划项目(PXM2014_014213_000033);北京市教委科技计划重点项目(KZ201510011011)

摘  要:河流水位的变化过程是一个复杂的非线性过程,传统的神经网络预测存在误差较大、收敛速度慢、稳定性差等问题。为了实现对河流水位的有效预测,提出基于遗传算法(GA)优化Elman神经网络的河流水位预测模型。将GA与Elman网络进行有效结合,解决了单一Elman网络存在的不足。选取永定河的监测站点水文数据对河流水位进行预测与检验,并分别将其与Elman网络与BP网络预测结果进行对比。对比结果表明:GA-Elman水位预测模型的收敛速度快、精度高,可根据预测结果实现对水库、拦河闸合理调用,实现对河流水资源的有效配置,以满足灌溉、发电、防洪等工作的需求。The fluctuation of river water level is a complex nonlinear process.Traditional neural network prediction is of slow convergence and poor stability with large error.To effectively predict river water level,a prediction model based on Elman neural network optimized by genetic algorithm(GA)is proposed.The effective combination of GA and Elman network solves the deficiencies of Elman neural network.The water level at Yongding river monitoring station is predicted by the proposed model and validated according to measured hydrological data,and the prediction results are compared with those obtained by Elman neural network and BP neural network.Results imply that the GA-Elman water level prediction model is of fast convergence and high precision.According to the prediction results,reservoirs and river barrages can be operated rationally for an effective allocation of water resources to meet the demands of irrigation,power generation and flood control.

关 键 词:河流水位 预测模型 GA算法 ELMAN网络 BP网络 河流水资源有效配置 

分 类 号:TV213.9[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象