深孔台阶爆破近区振动信号趋势项去除方法  被引量:24

Trend removing methods of vibration signals of deep hole bench blasting in near field

在线阅读下载全文

作  者:韩亮[1] 刘殿书[2] 辛崇伟 梁书锋[2] 凌天龙[2] 武宇[2] 李晨[2] HAN Liang;LIU Dianshu;XIN Chongwei;LIANG Shufeng;LING Tianlong;WU Yu;LI Chen(Safety Engineering College,North China Institute of Science and Technology, Beijing 101601,China;School of Mechanics and Civil Engineering,China University of Mining and Technology, Beijing 100083,China;School of Civil and Environmental Engineering,University of Science and Technology Beijing, Beijing 100083,China)

机构地区:[1]华北科技学院安全工程学院,北京101601 [2]中国矿业大学(北京)力学与建筑工程学院,北京100083 [3]北京科技大学土木与环境工程学院,北京100083

出  处:《爆炸与冲击》2018年第5期1006-1012,共7页Explosion and Shock Waves

基  金:中央高校基本科研业务费资助项目(3142017092);廊坊市科技支撑计划项目(2017013149)

摘  要:基于深孔台阶爆破近区大量实测振动信号,总结了趋势项产生的原因主要为大振幅脉冲输入下的非线性失真及低频干扰叠加,在此基础上以测试仪器有效监测范围作为识别趋势项组成部分的判别准则。利用集合经验模态分解(ensemble empirical mode decomposition,EEMD)、小波分解等信号分析手段,提出了以固有模态函数(intrinsic mode function,IMF)的频带分布为指标、人工判别的趋势项去除方法,以及基于自相关分析识别噪声特征的小波阈值去噪方法。实例证明该方法切实有效,可实现爆破信号的批量化预处理。Based on a large number of measured vibration signals of deep hole bench blasting in near field,this paper has contributed the trend mainly to the nonlinear distortion and the low frequency interference superposition with a large amplitude pulse input.On this basis,the effective monitoring range of test instruments has been chosen as criteria to identify the part of the trend.Using ensemble empirical mode decomposition(EEMD),the wavelet analysis,and other signal analysis methods,a trend elimination method is proposed here,which is based on the combination of the frequency band distribution of each intrinsic mode function component and artificial identification.In addition,a wavelet threshold denoising method is also proposed based on autocorrelation analysis to identify noise characteristics.Examples show that the methods are effective and can be realized by batch pretreatment of blasting signals.

关 键 词:近区 爆破震动 趋势项 集合经验模态分解 自相关分析 小波 去噪 

分 类 号:O389[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象