基于WLD-LPQ特征的心盘螺栓故障图像检测算法  被引量:6

Research on fault recognition algorithm of center plate bolts based on WLD-LPQ features

在线阅读下载全文

作  者:张金敏[1] 冯映科 王思明[2] ZHANG Jinmin;FENG Yingke;WANG Siming(School of Mechatronic Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学机电工程学院,甘肃兰州730070 [2]兰州交通大学自动化与电气工程学院,甘肃兰州730070

出  处:《铁道科学与工程学报》2018年第9期2349-2358,共10页Journal of Railway Science and Engineering

基  金:国家自然科学基金资助项目(61263004)

摘  要:针对货车心盘螺栓故障图像,提出一种基于韦伯局部描述符(Weber Local Descriptor, WLD)特征和局部相位量化(Local Phase Quantization, LPQ)特征融合的故障图像检测算法。该算法分为螺栓定位与识别2个步骤,采用间接定位法逐步定位感兴趣区域(Region of Interest, ROI),通过最大类间方差法(Otsu)和改进的Canny算法与图像投影结合定位螺栓部位;利用WLD特征和LPQ特征分别提取螺栓纹理,对其归一化,使用PCA降维特征向量,串行联合为WLD-LPQ特征,通过支持向量机SVM自动检测识别。研究结果表明:本文算法能快速准确定位,空间域与频率域结合的WLD-LPQ特征提高了检测识别率,平均检测识别率达到98%以上。A method based on the combination of WLD and LPQ features was proposed which aimed fault image of center plate bolts of freight train.The algorithm was divided into two steps:bolt positioning and recognition.Firstly,the positioning of the ROI was investigated by the indirect location method.The Otsu Method and the improved Canny algorithm combined with image projection were used to position the bolt.Secondly,the WLD feature and LPQ feature were chosen to extract the bolt texture separately which were normalized next.Then this paper used the PCA dimensionality vector.Finally,the WLD feature and LPQ feature was proposed to form the WLD-LPQ feature which was combined with SVM for automatic recognition and detection.Test results show that this method can quickly locate the center plate bolts.The recognition rate is high and the average fault recognition rate is over 98%.

关 键 词:心盘螺栓图像检测 WLD LPQ 特征融合 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象