检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张志佳[1] 吴天舒 刘云鹏[2] 方景哲 李雅红[1] ZHANG Zhi-jia;WU Tian-shu;LIU Yun-peng;FANG Jing-zhe;LI Ya-hong(School of Software,Shenyang University of Technology,Shenyang 110870,China;Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China)
机构地区:[1]沈阳工业大学软件学院,沈阳110870 [2]中国科学院沈阳自动化研究所,沈阳110016
出 处:《沈阳工业大学学报》2018年第5期518-523,共6页Journal of Shenyang University of Technology
基 金:国家自然科学基金资助项目(61540069);装发部共用技术课题项目资助(Y6k4250401)
摘 要:为了提高手写体数字识别的准确率,设计并提出了一种基于连续非对称卷积结构的手写体数字识别的深度学习算法.以连续非对称卷积结构为基础,结合极限学习机和MSRA初始化设计网络结构.在识别输入图像时,利用CUDA并行计算与Cudnn神经网络GPU加速库对手写体数字识别进行加速.在MNIST手写体数字数据库上进行实验,提出的网络结构识别准确率达到99.62%,单张图像识别速度为0.005 8 s.经实验结果对比表明,该网络结构在识别准确率和识别速度上得到有效提升.In order to improve the accuracy of handwritten numeral recognition,a deep learning algorithm for handwritten numeral recognition based on the continuous asymmetric convolution structure was designed and proposed.Based on the continuous asymmetric convolution structure and in combination with the extreme learning machine and MSRA initialization,the network structure was designed.With identifying the input image,the CUDA parallel computing and the Cudnn neural network GPU acceleration library were used to accelerate the handwritten numeral recognition.The experiments were performed on the MNIST handwritten digital database.The accuracy of network structure recognition is 99.62%,and the single image recognition speed is 0.005 8 s.The comparison of experimental results shows that both recognition accuracy and recognition speed for the present network structure has been effectively improved.
关 键 词:连续非对称卷积结构 手写体数字识别 极限学习机 深度学习 批量正则化 MSRA初始化 CUDA并行计算 MNIST数据库
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.100.199