检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨晨晖[1] 侯超群 YANG Chenhui;HOU Chaoqun(School of Information Science and Engineering,Xiamen University,Xiamen 361005,China)
机构地区:[1]厦门大学信息科学与技术学院,福建厦门361005
出 处:《厦门大学学报(自然科学版)》2018年第5期708-714,共7页Journal of Xiamen University:Natural Science
摘 要:阿尔茨海默病(Alzheimer′s disease,AD)具有数据量少、多模态以及高维度等特点.为了对AD进行有效的预测,首先提出一个基于类内方差最小化的多任务特征选择(minimum intra-class variance-based multitask feature selection,MIVMTFS)算法,然后结合基于有效距离的拉普拉斯分数特征选择(effective distance-based laplacian score feature selection,EDLSFS)算法和MIVMTFS算法,提出一种二阶段多任务特征选择(two-stage multi-task feature selection,TSMTFS)算法.TSMTFS算法先利用EDLSFS算法在保持特征局部结构的情况下对原始样本特征进行无监督预降维,再利用MIVMTFS算法对降维后的特征进行有监督地再降维,最终获得一个精简特征子集.实验部分主要包括AD的2个二分类任务,并分别对单模态数据和多模态数据进行实验.实验结果验证了TSMTFS算法在AD领域能够缓解单模态特征选择的信息不够充分、样本量少以及特征维度高等不足.Alzheimer′s disease(AD)is characterized with few samples,multi modes,and high dimensionality.In this article,we first propose a minimum intra-class variance-based multitask feature selection(MIVMTFS)algorithm.Then,we propose a multi-task feature selection method of two-stage strategy based on combining effective distance-based Laplacian score feature selection(EDLSFS)algorithm and MIVMTFS algorithm.The former is used to pre-reduce feature dimension of label data,keeping the local structure of the original sample feature.The latter has been used to reduce the dimensionality of the reduced feature further.Finally,we can obtain a simplified feature subset.The experimental part of this paper includes two binary classification tasks,and we have also used the single modal and multi modal data to test algorithms′performances.Experimental results show that TSMTFS algorithm can alleviate these shortcomings including information deficiency,few samples and feature of high-dimensional during the feature selection of single modal in the field of AD.
关 键 词:阿尔茨海默病 类内方差 有效距离 多任务特征选择 拉普拉斯分数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.250.4