检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于丽 刘坤[1] 于晟焘 YU Li;LIU Kun;YU Shengtao(Information Engineering College,Shanghai Maritime University,Yantai,Shandong 264000,China;Information Engineering College,Shanghai Maritime University,Shanghai 201306 China;Information Engineering College,Shanghai Maritime University,Linyi,Shandong 276000,China)
机构地区:[1]上海海事大学信息工程学院,山东烟台264000
出 处:《计算机工程与应用》2018年第19期179-185,203,共8页Computer Engineering and Applications
基 金:国家自然科学基金(No.61271446);航空科学基金(No.2013ZC15005)。
摘 要:传统的飞机识别方法受模糊、遮挡、噪声以及光照等多种因素的干扰时会降低识别率,且卷积神经网络主要依赖局部特征,却丢失了轮廓特征等重要的全局结构化特征,从而导致算法对于受干扰飞机图像识别效果不佳。因此,基于密集卷积神经网络提出一种结合局部与全局特征的联合监督识别方法,以密集卷积神经网络为基础得到图像特征,通过结合局部特征(卷积神经网络特征)与全局特征(方向梯度直方图特征)进行分类,分类器目标函数使用softmax损失和中心损失联合监督方法。实验结果表明,局部特征与全局特征的结合使算法更加智能化,且损失函数联合监督方法能够实现图像深层特征的类内聚合、类间分散,该算法能有效解决卷积神经网络对受到多种干扰的遥感图像识别率低的问题。Conventional aircraft identification methods reduce the recognition rate when disturbed by many factors such as blurring,occlusion,noise and illumination,and the convolution neural network relies mainly on the local features while the important global structural features such as contour features are lost,which leads to poor performance of the algorithm in identifying disturbed aircraft images.Therefore,a joint surveillance and recognition method that combines local and global features based on dense convolutional neural network is proposed,and image features are obtained based on dense convolution neural networks and classified by combining local features(convolution neural network features)and global features(direction gradient histogram features).The classifier objective function uses softmax loss and central loss joint monitoring method.The experimental results show that the combination of local features and global features makes the algorithm more intelligent,and the loss function joint supervision method can achieve intra-class aggregation and interclass dispersion of images deep features.This algorithm can effectively solve the problem of low recognition rate of convolution neural networks for remote sensing images that suffer from multiple disturbances.
关 键 词:密集卷积神经网络 目标识别 中心损失 联合监督 方向梯度直方图
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229