Influence of deformation path on the forming effect in a multistep flexible rolling process  被引量:2

Influence of deformation path on the forming effect in a multistep flexible rolling process

在线阅读下载全文

作  者:Ying Li Wen-zhi Fu Ming-zhe Li Xiao-dong Liu Shuo Sun Zhuo Yi 

机构地区:[1]Roll Forging Institute, Jilin University [2]College of materials science and engineering, Jilin University

出  处:《International Journal of Minerals,Metallurgy and Materials》2018年第10期1173-1180,共8页矿物冶金与材料学报(英文版)

基  金:support given by the National Natural Science Foundation of China(No.51275202)

摘  要:The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.

关 键 词:3D surface FORMING MULTISTEP FLEXIBLE rolling numerical simulation DEFORMATION PATH FORMING EFFECT 

分 类 号:TF[冶金工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象