基于光谱解混的城市地物分类研究  被引量:2

Investigation on Urban Object Classification Based on Spectral Unmixing

在线阅读下载全文

作  者:黄作维[1] 胡光伟[1] 谢世雄[1] HUANG Zuowei;HU Guangwei;XIE Shixiong(Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology,Zhuzhou 412000,China)

机构地区:[1]湖南工业大学农牧业废弃物资源化综合利用湖南省重点实验室,株洲412000

出  处:《农业机械学报》2018年第10期205-211,共7页Transactions of the Chinese Society for Agricultural Machinery

基  金:湖南省自然科学基金项目(2017JJ2072;2017JJ3056)

摘  要:高光谱遥感信息提取面临的突出问题是混合像元的广泛存在,如何有效地解译混合像元是高光谱遥感应用的关键问题。混合像元不仅影响地物的识别和分类精度,而且是遥感技术向定量化发展的重要障碍,混合像元分解是解决混合像元问题最有效的方法,能够克服高光谱图像空间分辨率的限制。针对传统混合像元分解算法的缺点,基于优化的候选端元判断方法及端元提取的并行设计方法,提出了一种优化的混合像元分解方法,实现了光谱特征信息和空间特征信息的有机融合。通过模拟高光谱数据和真实遥感图像进行仿真研究,实验结果表明,该方法能得到精确的端元和对应的丰度,获得较好的解混效果,为城市地物分类提供了有力支持。One of the prominent problems in hyperspectral remote sensing is the existing of mixed pixel widely.How to effectively interpret mixed pixels is an important problem of hyperspectral remote sensing applications.It is not only a problem of mixed pixels effects identification and classification precision of objects,but also a major barrier for the development of remote sensing technology.Mixed pixel decomposition,which is the most effective method to solve the mixed pixel problem,can break through the limitation of spatial resolution.Aiming to the shortcoming of the traditional algorithm of mixed pixel decomposition,an improved method of mixed pixels was put forward,which can take account of the spatial correlation of spectral information and spectral information,and multi-core parallel processing method to raise its efficiency.The endmembers were automatically extracted,and the abundance charts corresponding to each endmember were obtained at the same time.The performance of the proposed algorithm was verified by using actual hyperspectral image.The experimental results on simulated and real hyperspectral image demonstrated that the proposed algorithm can overcome the shortcomings of traditional method and obtain more accurate endmembers and corresponding abundance,which can provide a strong support for urban object classification.

关 键 词:地物分类 光谱解混 端元提取 光谱空间特征 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象