检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡娅菁 王刚[1] 骆英[1] 李亚芳[1] 易成[1] HU Ya-jing;WANG Gang;LUO Ying;LI Ya-fang;YI Cheng(Department of Pharmacy,Hangzhou First People's Hospital,Hangzhou,310000,China)
机构地区:[1]杭州市第一人民医院药剂科,浙江杭州310000
出 处:《南京中医药大学学报》2018年第5期480-484,共5页Journal of Nanjing University of Traditional Chinese Medicine
摘 要:目的研究响应曲面回归模型及偏最小二乘回归模型对流化床制粒的颗粒粒径分布拟合结果。方法采用流化床制粒制备垂盆草颗粒,利用Box-Behnken试验设计考察粘合剂加入速度(X_1),液固比(X_2),进风温度(X_3)对颗粒粒径的影响,并分别用响应曲面回归模型及偏最小二乘回归模型研究过程参数对粒径分布的拟合情况。结果回归分析结果表明响应曲面回归模型及偏最小二乘回归模型均能较好的模拟流化床制粒结果,且响应曲面回归模型具有较好的模型拟合精度和预测能力。结论结合实验设计与不同的统计模型可深入研究流化床制粒过程,提升对流化床制粒过程的理解,为今后该产品产业化发展提供了参考和技术支持。OBJECTIVE To explore the particle size distribution of granules prepared by fluid bed granulation via response surface regression model(RSM)and partial least square regression model(PLS).METHODS Sedi Herba extract was granulated by fluid bed granulation.Box Behnken design in RSM was utilized to study the effects of binder addition rate(X 1),the liquid to solid ratio(X 2)and air temperature(X 3)on particle size distribution.Moreover,RSM and PLS were employed to explore the influence of process parameters on particle size distribution.RESULTS The results demonstrated that both of RSM and PLS could fit the fluid bed granulation well.Furthermore,RSM model exhibited better model fitting precision and prediction ability.CONCLUSION We could understand the process of fluid bed granulation profoundly based on experimental design and the different statistical models.A robust and high prediction model could be achieved,which could provide reliable basis and technical support for further production.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117