基于绝对值负指数累加的稳健型频谱感知算法  

A Robust Spectrum Sensing Algorithm based on Exponential Absolute Value Cumulating

在线阅读下载全文

作  者:赵季红 悦俊鹏[1] 曲桦 徐西光[2] 王文科[1] ZHAO Ji-hong;YUE Jun-peng;QU Hua;XU Xi-guang;WANG Wen-ke(School of Communications and Information Engineering,Xi’an University of Posts&Telecommunications,Xi’an 710061,China;School of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China)

机构地区:[1]西安邮电大学通信与信息工程学院,西安710061 [2]西安交通大学电子与信息工程学院,西安710049

出  处:《光通信研究》2018年第5期63-68,共6页Study on Optical Communications

基  金:国家自然科学基金资助项目(61531013;61371087)

摘  要:针对拉普拉斯噪声环境中的大幅度冲击噪声干扰导致频谱检测性能降低的问题,提出了基于绝对值负指数累加的稳健型频谱感知算法。该算法首先通过对接收信号绝对值做负指数处理来抑制大幅度的冲击噪声,然后再将其进行累加作为检验统计量,并利用中心极限定理得出判决统计量的概率密度函数,求出判决门限,进而判断频谱是否被主用户占用。理论分析和仿真结果表明,所提算法在相同虚警概率及不同信噪比下的检测概率高于目前常用的绝对值累加算法、能量检测算法和绝对值开平方累加算法的检测概率。Due to the large impulse noise interference in Laplace noise environment,the performance of spectrum detection is reduced.In order to solve the issue,a robust spectrum sensing algorithm based on exponential absolute value cumulating is proposed.Firstly,it manages the received signal with the exponential absolute value cumulating.This method can compress the impulse noise.It cumulates the signal as the decision statistics.And it can obtain the probability density function of the decision statistics using the central limit theorem and get the threshold.Then it judges whether primary user is using the spectrum.Theoretical analysis and simulation results show that under the same false alarm probability or different signal-to-noise ratio,the detection probability of the proposed algorithm is higher than the detection probability of the absolute value cumulating algorithm and the detection probability of the energy detection with Laplace noise algorithm and the detection probability of the modified absolute value cumulating algorithm.

关 键 词:认知无线电 频谱感知 拉普拉斯噪声 理论判决门限 检测概率 

分 类 号:TN91[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象