检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭宝震 左万利[1] 王英[1] College of Computer Science and Technology,Key Laboratory of Symbolic Computation and Knowledge Engineering,Ministry of Education,Changchun 130012,China;ZUO Wan-li;WANG Ying(College of Computer Science and Technology,Key Laboratory of Symbolic Computation and Knowledge Engineering,Ministry of Education,Changchun 130012,China)
机构地区:[1]吉林大学计算机科学与技术学院符号计算与知识工程教育部重点实验室,吉林长春130012
出 处:《浙江大学学报(工学版)》2018年第9期1729-1737,共9页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金重大项目(60496321);国家自然科学基金资助项目(60973040);国家自然科学基金资助项目(61602057;);吉林省科技攻关项目(2013026051GX);吉林省科技发展计划资助项目(20180101330JC);吉林省科技厅优秀青年人才基金资助项目(20170520059JH)
摘 要:针对句子中不同的词对分类结果影响不同以及每个词对应的词向量受限于单一词向量训练模型的特点,提出一种基于词向量注意力机制的双路卷积神经网络句子分类模型(AT-DouCNN).该模型将注意力机制和卷积神经网络相结合,以不同训练算法得到的词向量同时作为输入,分别进行卷积和池化,并在全连接层进行融合,不仅能够使得具体分类任务下句子中的关键信息更易被提取,还能够有效地利用不同种类的词向量得到更加丰富的句子特征,进而提高分类的准确率.实验结果表明:所提出的模型在3个公开数据集上的分类准确率分别达到50.6%、88.6%和95.4%,具有良好的句子分类效果.A novel sentence classification model was proposed based on double convolutional neural networks with attention mechanism of word embeddings(AT-DouCNN)in view of the points that different words have different influences to the results of classification and the word embedding of each word is restricted by a single training tool.The proposed model combined the convolutional neural networks with attention mechanism.Meanwhile,this model took the word embeddings obtained by different training algorithms as input,performed convolution and pooling respectively,and fused them in the full connection layer.Based on these,the model not only makes the key information in a sentence more easily extracted under a specific classification task,but also gets more abundant sentence features with the effective use of different kinds of word embeddings,so as to improve the accuracy of classification.The experimental results demonstrate that the proposed model achieves competitive performance in sentence classification and the accuracy is 50.6%,88.6%and 95.4%on three public datasets,respectively.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.135.185