基于动态策略的差分进化柔性车间优化调度  被引量:5

Dynamic Strategy-based Differential Evolution for Flexible Job Shop Scheduling Optimization

在线阅读下载全文

作  者:张贵军[1] 王文 周晓根 王柳静[1] ZHANG Gui-jun;WANG Wen;ZHOU Xiao-gen;WANG Liu-jing(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)

机构地区:[1]浙江工业大学信息工程学院,杭州310023

出  处:《计算机科学》2018年第10期240-245,共6页Computer Science

基  金:国家自然科学基金(61773346;61573317);浙江省重点研发计划项目(2017C03060)资助

摘  要:针对柔性作业车间调度问题,提出基于动态策略的差分进化优化方法。首先,基于差分进化算法框架,考虑个体之间的距离,设计种群拥挤度指标来衡量当前种群的分布情况,进而自适应判断算法所处阶段;然后,针对不同阶段的特点设计相应的变异策略池,实现变异策略的动态阶段选择,达到提高算法搜索效率的目的;最后,10个标准测试函数的计算结果表明了所提方法的有效性,进一步,采用工序和机器双层编码的方式,以最大完工时间为目标,求解得到作业车间调度测试问题的最佳调度方案。To solve the flexible job shop scheduling problem,a differential evolution optimization method based on dynamic strategy was proposed in this paper.Firstly,based on the framework of differential evolution algorithm,taking the distance between individuals into consideration,the indicator of population crowding degree was designed,which for measuring the distribution of the current population,and the stage of the algorithm can be further determined adaptively.Then,in view of characteristics of different stages,the corresponding mutation strategy pool was designed to realize the dynamic stage selection of mutation strategy,so as to improve the search efficiency of the algorithm.Finally,the test results on 10 benchmark functions show that the proposed algorithm is feasible and efficient.Based on the double layer coding method of working procedure and machine,the best scheduling scheme was obtained by minimizing the maximum completion time.

关 键 词:柔性作业车间调度 差分进化 变异策略 动态策略 双层编码 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象