基于修正BPSO的通用模式指标上界估算方法  

Estimation Method for Upper Bound of General Pattern Index Based on Modified BPSO

在线阅读下载全文

作  者:王菊[1] 刘付显[1] 靳春杰 WANG Ju;LIU Fuxian;JIN Chunjie(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China;93527 Troop,Zhangjiakou,Hebei 075000,China)

机构地区:[1]空军工程大学防空反导学院 [2]93527部队

出  处:《计算机工程》2018年第10期168-174,共7页Computer Engineering

摘  要:针对约束频繁模式挖掘中模式指标的界值估算问题,提出一种基于修正二进制粒子群优化(BPSO)算法的通用模式指标上界估算方法。根据带有权值的不确定型事务数据库的特点,建立通用的模式指标上界估算框架,并提出在该框架下基于修正BPSO的模式指标上界值求解方法。对比UHUI-Apriori算法分别结合事务加权效用值、本文方法估算所得上界值和实际上界值后的候选项集数量、运行时间和内存占用情况,结果表明,该方法可以较快计算模式效用的上界值,且能够节省运行时间和内存空间。A general pattern index upper bound estimation method based on modified Binary Particle Swarm Optimization(BPSO)algorithm is proposed to estimate the boundary value estimation problem in constrained frequent pattern mining.According to the characteristics of the uncertain transaction database with weights,a general pattern index upper bound estimation framework is established,and the method of solving the upper bound value of the pattern index based on the modified BPSO is proposed.The number of candidate itemses,runtime and memory usage of the UHUI-Apriori with Transaction Weighted Utilization(TWU),the proposed method estimates upper bound and the actual upper bound are compared,and the results show that the proposed method can quickly calculate the upper bound value of the mode utility and save the running time and memory space.

关 键 词:不确定型数据库 模式指标 界值估算 粒子群优化算法 约束频繁模式挖掘 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象