检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢柳柳 黄小涛 XIE Liuliu;HUANG Xiaotao(College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China)
出 处:《南京航空航天大学学报》2018年第5期722-726,共5页Journal of Nanjing University of Aeronautics & Astronautics
基 金:国家自然科学基金(11401303)资助项目;研究生创新基地(实验室)开放基金(kfjj20170806)资助项目
摘 要:在有界环形区域上,研究了一类分数阶薛定谔方程孤立解的对称性问题。首先将分数阶薛定谔方程转化为包含Bessel位势和Riesz位势的积分方程组,然后利用移动平面法和Hardy-Littlewood-Sobolev不等式,证明了当方程边值为常数时,环形区域必为同心球,方程正解是径向对称的,且随着到对称点的距离增大而单调递减。The aim of this paper is to investigate the symmetry problem of a class of fractional Schr dinger equations in bounded annular domains.The fractional Schr dinger equations will be transformed into a system of integral equations involving Bessel potentials and Riesz potentials.Then via the methods of moving planes and Hardy-Littlewood-Sobolev inequality,this paper proves that the annular domains must be balls with the same center,and provided that the boundary values of these equations are constants,positive solutions of this system must be radially symmetric and decreasing with the distance from the center.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44