基于小波包层次熵的电主轴振动信号特征提取方法  被引量:6

Feature extraction method of motorized spindle vibration signal based on wavelet packet transform and hierarchical entropy

在线阅读下载全文

作  者:雷春丽[1,2] 杨晓燕 成彦伟 张亚斌 方景芳[1,2] LEI Chun-li;YANG Xiao-yan;CHENG Yan-wei;ZHANG Ya-bin;FANG Jing-fang(College of Mechano-Electronic Engineering,Lanzhou Univ.of Tech.,Lanzhou 730050,China;Key Laboratory of Digital Manufacturing Technology and Application,The Ministry of Education,Lanzhou Univ.of Tech.,Lanzhou 730050,China)

机构地区:[1]兰州理工大学机电工程学院,甘肃兰州730050 [2]兰州理工大学数字制造技术与应用省部共建教育部重点实验室,甘肃兰州730050

出  处:《兰州理工大学学报》2018年第5期40-45,共6页Journal of Lanzhou University of Technology

基  金:国家自然科学基金(51465035)

摘  要:为了对电主轴运转时振动信号特征进行更有效的提取,提出了基于小波包层次熵的电主轴特征提取方法.首先对电主轴振动信号利用小波包变换进行分解、重构,得到若干节点信号;然后计算不同节点信号的样本熵值,构成其小波包层次熵值;最后通过小波包层次熵值提取电主轴振动信号特征.计算结果表明:与傅里叶变换方法相比,基于小波包层次熵的分析方法不仅考虑了时间序列的低频成分,同时也考虑了其高频成分,可有效地提高特征提取的准确率,更精确和完整地描述电主轴振动信号的特征,为提取电主轴振动信号特征提供了一种快速有效的新方法.In order to extract the characteristics of the vibration signal of motorized spindle more effectively,an extraction approach was proposed based on wavelet packet and hierarchical entropy.Firstly,the vibration signals of the motorized spindle were decomposed and reconstructed with wavelet packet transform to obtain several nodal signals.Then the sample entropies of different nodes were calculated to form their wavelet packet hierarchical entropy.Finally,according to the entropy value,the characteristics of vibration signal were extracted.Their calculation result showed that compared to the Fourier transformation method,the proposed analysis method not only the low frequency component of the time series would take into account,but also the high frequency component,so that the accuracy of feature extraction could be improved,the characteristics of motorized spindle vibration signals could be described more precisely and completely,and a fast and valid novel method for extraction of vibration signal characteristics of motorized spindle would be offered.

关 键 词:电主轴 振动信号 小波包 层次熵 

分 类 号:TH113.1[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象