基于稀疏特征的红外与可见光图像融合  被引量:8

Infrared and Visible Image Fusion Based on Sparse Feature

在线阅读下载全文

作  者:丁文杉 毕笃彦[1] 何林远[1] 凡遵林 吴冬鹏 DING Wen-shan;BI Du-yan;HE Lin-yuan;FAN Zun-lin;WU Dong-peng(Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China)

机构地区:[1]空军工程大学航空航天工程学院,西安710038

出  处:《光子学报》2018年第9期227-236,共10页Acta Photonica Sinica

基  金:国家自然科学基金(No.61701524)~~

摘  要:针对传统的红外与可见光图像融合算法提取目标信息不突出的问题,提出一种基于非下采样剪切波变换和稀疏结构特征的融合方法.首先用非下采样剪切波变换分解源图像;然后通过主成分分析提取低频子带系数中边缘和轮廓等显著特征,引导低频成分融合规则的设计,同时基于结构信息的稀疏性指导融合高频子带系数;最后经过非下采样剪切波变换逆变换得到融合后的图像.实验结果表明,该方法在保留可见光图像背景信息的基础上,突显了红外图像的结构信息,有效提高了融合效果.Since the object information can not be extracted efficiently by the traditional infrared and visible image fusion algorithms,an infrared and visible image fusion method based on the non-subsampled shearlet transform and sparse structure features is proposed.Firstly,the source images are decomposed by the non-subsampled shearlet transform.Then,benefit from the advantage of principal component analysis on extracting edge and contour significant features,the fusion rule in low-frequency sub-bands coefficients are merged by using the principal component analysis-based approach.Afterwards,the sparseness based on structural information guides the fusion of high frequency subband coefficient.Finally,the inverse non-subsampled shearlet transform is employed to obtain the fused image.The experimental results demonstrate that the proposed method preserves the background information on visible image and highlights the structural information on infrared image,and improves fusion results effectively.

关 键 词:红外与可见光图像融合 非下采样剪切波变换 主成分分析 稀疏表示 结构特征 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象