检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马萍 刘思含 孙根云[1,2] 张爱竹 郝艳玲 MA Ping;LIU Sihan;SUN Genyun;ZHANG Aizhu;HAO Yanling(School of Geosciences,China University of Petroleum(East China),Qingdao,Shandong 266580,China;Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong 266071,China;Satellite Environmental Center,Ministry of Environmental Protection,State Environmental Protection Key Laboratory of Satellite Remote Sensing,Beijing 100094,China)
机构地区:[1]中国石油大学(华东)地球科学与技术学院,山东青岛266580 [2]青岛海洋国家实验室海洋矿产资源评价与探测技术功能实验室,山东青岛266071 [3]环境保护部卫星环境应用中心国家环境保护卫星遥感重点实验室,北京100094
出 处:《计算机工程与应用》2018年第22期35-41,共7页Computer Engineering and Applications
基 金:国家自然科学基金(No.41471353)
摘 要:针对生物地理学优化算法(Biogeography-Based Optimization,BBO)易发生早熟收敛、陷入局部最优的问题,提出一种基于邻域引力学习的生物地理学优化算法(Neighbor Force Learning Biogeography-Based Optimization,NFBBO)。该算法采用邻域选择的方法确定迁出栖息地,以充分利用栖息地的邻域信息,增加算法的种群多样性。同时采用引力学习策略对栖息地进行更新,拓展搜索空间,提高算法的搜索能力,避免早熟收敛问题。为使种群能够自适应地跳出局部最优,引入一种自适应高斯变异机制。基于高维标准测试函数的对比实验表明,NFBBO算法具有更快的收敛速度和更高的收敛精度。Biogeography-Based Optimization(BBO)easily suffers from the premature convergence and local optima trapping problems.In order to solve these issues,a new algorithm,named Neighbor Force Learning Biogeography-Based Optimization(NFBBO),is proposed in this paper.NFBBO presents a neighbor selection strategy,in which an emigrating solution is selected from the neighbors of the immigrating solution based on its suitability and distance.This operation can exploit the neighborhood information of swarm and improve the population diversity.Then,a force learning strategy is integrated with the migration operator to update the immigrating solutions.This strategy can expand the solutions search space and enhance the searching ability of BBO to avoid the prematurity.Furthermore,in order to escape from the local optima,an adaptive Gaussian mutation mechanism is further introduced,which is an effective jump-out mechanism.Experimental study is conducted on 10 well-known high-dimensional benchmark functions.The experimental results indicate that NFBBO has better search performance compared with other competing algorithms in terms of the convergence rate and the quality of the final solutions.
关 键 词:生物地理学优化算法 邻域选择 引力学习 自适应高斯变异机制
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.141.193